Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5922, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739965

RESUMO

Alzheimer's disease (AD) is characterized by toxic protein accumulation in the brain. Ubiquitination is essential for protein clearance in cells, making altered ubiquitin signaling crucial in AD development. A defective variant, ubiquitin B + 1 (UBB+1), created by a non-hereditary RNA frameshift mutation, is found in all AD patient brains post-mortem. We now detect UBB+1 in human brains during early AD stages. Our study employs a 3D neural culture platform derived from human neural progenitors, demonstrating that UBB+1 alone induces extracellular amyloid-ß (Aß) deposits and insoluble hyperphosphorylated tau aggregates. UBB+1 competes with ubiquitin for binding to the deubiquitinating enzyme UCHL1, leading to elevated levels of amyloid precursor protein (APP), secreted Aß peptides, and Aß build-up. Crucially, silencing UBB+1 expression impedes the emergence of AD hallmarks in this model system. Our findings highlight the significance of ubiquitin signalling as a variable contributing to AD pathology and present a nonclinical platform for testing potential therapeutics.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Transdução de Sinais , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Técnicas de Cultura de Células em Três Dimensões
2.
Cell Rep ; 42(7): 112701, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37384533

RESUMO

The 26S proteasome comprises 20S catalytic and 19S regulatory complexes. Approximately half of the proteasomes in cells exist as free 20S complexes; however, our mechanistic understanding of what determines the ratio of 26S to 20S species remains incomplete. Here, we show that glucose starvation uncouples 26S holoenzymes into 20S and 19S subcomplexes. Subcomplex affinity purification and quantitative mass spectrometry reveal that Ecm29 proteasome adaptor and scaffold (ECPAS) mediates this structural remodeling. The loss of ECPAS abrogates 26S dissociation, reducing degradation of 20S proteasome substrates, including puromycylated polypeptides. In silico modeling suggests that ECPAS conformational changes commence the disassembly process. ECPAS is also essential for endoplasmic reticulum stress response and cell survival during glucose starvation. In vivo xenograft model analysis reveals elevated 20S proteasome levels in glucose-deprived tumors. Our results demonstrate that the 20S-19S disassembly is a mechanism adapting global proteolysis to physiological needs and countering proteotoxic stress.


Assuntos
Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Citoplasma/metabolismo , Proteólise , Espectrometria de Massas
3.
Mol Cell ; 83(11): 1921-1935.e7, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201526

RESUMO

Although most eukaryotic proteins are targeted for proteasomal degradation by ubiquitination, a subset have been demonstrated to undergo ubiquitin-independent proteasomal degradation (UbInPD). However, little is known about the molecular mechanisms driving UbInPD and the degrons involved. Utilizing the GPS-peptidome approach, a systematic method for degron discovery, we found thousands of sequences that promote UbInPD; thus, UbInPD is more prevalent than currently appreciated. Furthermore, mutagenesis experiments revealed specific C-terminal degrons required for UbInPD. Stability profiling of a genome-wide collection of human open reading frames identified 69 full-length proteins subject to UbInPD. These included REC8 and CDCA4, proteins which control proliferation and survival, as well as mislocalized secretory proteins, suggesting that UbInPD performs both regulatory and protein quality control functions. In the context of full-length proteins, C termini also play a role in promoting UbInPD. Finally, we found that Ubiquilin family proteins mediate the proteasomal targeting of a subset of UbInPD substrates.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitinação , Proteínas de Ciclo Celular/metabolismo
4.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194936, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075976

RESUMO

Misfolded protein aggregation at both intracellular and extracellular milieus is thought to be the major etiology of Alzheimer's disease (AD). UBB+1, a frameshift variant of the ubiquitin B gene (UBB) results in a folded ubiquitin domain fused to a flexible unstructured extension. Accumulation of UBB+1 in extracellular plaques in the brains of AD patients undoubtedly suggests a role of the ubiquitin-proteasome system in AD. However, the exact mechanism of extracellular secretion of UBB+1 remains unknown. In an attempt to understand the molecular mechanism of UBB+1 secretion, we performed a survey of secretory pathways and identified the involvement of unconventional autophagosome-mediated UBB+1 secretion. Expression of UBB+1 was sufficient to stimulate LC3B/Atg8 conversion from LC3B-I to LC3B-II, which indicates initiation of the autophagy pathway. Furthermore, deficiency of ATG5 - a key player in autophagosome formation - inhibited UBB+1 secretion. Based on immunofluorescence 3D structured illumination (SIM) microscopy and co-immunoprecipitation, we provide evidence that UBB+1 is associated with the secretory autophagosome marker, SEC22B, while HSP90 possibly acts as a carrier. Using LC-MS/MS and mutagenesis we found that in cells, UBB+1 is ubiquitinated on lysine 11, 29, and 48, however, this ubiquitination does not contribute to its secretion. By contrast, proteasome or lysosome inhibition slightly enhanced secretion. Taken together, this study suggests that by ridding cells of UBB+1, secretory autophagosomes may alleviate the cellular stress associated with UBB+1, yet simultaneously mediate the spreading of a mutant specie with disordered characteristics to the extracellular milieu.


Assuntos
Doença de Alzheimer , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Autofagossomos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
5.
Biomolecules ; 13(3)2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36979414

RESUMO

The proteolytic active sites of the 26S proteasome are sequestered within the catalytic chamber of its 20S core particle (CP). Access to this chamber is through a narrow channel defined by the seven outer α subunits. In the resting state, the N-termini of neighboring α subunits form a gate blocking access to the channel. The attachment of the activators or regulatory particles rearranges the blocking α subunit N-termini facilitating the entry of substrates. By truncating or mutating each of the participating α N-termini, we report that whereas only a few N-termini are important for maintaining the closed gate, all seven N-termini participate in the open gate. Specifically, the open state is stabilized by a hydrogen bond between an invariant tyrosine (Y) in each subunit with a conserved aspartate (D) in its counterclockwise neighbor. The lone exception is the α1-α2 pair leaving a gap in the ring circumference. The third residue (X) of this YD(X) motif aligns with the open channel. Phenylalanine at this position in the α2 subunit comes in direct contact with the translocating substrate. Consequently, deletion of the α2 N-terminal tail attenuates proteolysis despite the appearance of an open gate state. In summary, the interlacing N-terminal YD(X) motifs regulate both the gating and translocation of the substrate.


Assuntos
Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Modelos Moleculares , Proteólise
6.
Methods Mol Biol ; 2602: 229-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36446979

RESUMO

Analyzing intracellular peptides generated by proteasomes is highly informative to understand the spatiotemporal regulation of protein homeostasis. A large portion of eukaryotic proteins is proteolyzed within the 20S core particle of the 26S holoenzyme, where proteins are cleaved into peptides of varying lengths. A small percentage of these peptides are presented to the immune system as a representation of the proteome content of the cell. Therefore, understanding the rules that govern proteolytic specificity and product diversity is of relevance not only to biochemistry and proteostasis but also to physiology and immunology. One of the greatest challenges is to separate such proteasome-generated peptides from the total intracellular peptidome due to the susceptibility of short unstructured peptides to myriad proteases and peptidases that are activated upon cell lysis. Here, we describe a simple and rapid method to isolate peptides that are closely associated with proteasomes or trapped inside the core particle of proteasomes in eukaryotic cells. This approach termed PTPs, for proteasome-trapped peptides, requires a limited number of cells as starting materials compared to other published methods yet still provides sufficient yields for mass spectrometry-based proteomic analysis. A single sample obtained from cultured mammalian cells allowed the identification of 1000-2000 different PTPs following LC-MS analysis with high-resolution mass spectrometer.


Assuntos
Complexo de Endopeptidases do Proteassoma , Receptores de Trombina , Animais , Proteômica , Citoplasma , Proteostase , Mamíferos
7.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956818

RESUMO

Deciphering the protein posttranslational modification (PTM) code is one of the greatest biochemical challenges of our time. Phosphorylation and ubiquitylation are key PTMs that dictate protein function, recognition, sub-cellular localization, stability, turnover and fate. Hence, failures in their regulation leads to various disease. Chemical protein synthesis allows preparation of ubiquitinated and phosphorylated proteins to study their biochemical properties in great detail. However, monitoring these modifications in intact cells or in cell extracts mostly depends on antibodies, which often have off-target binding. Here, we report that the most widely used antibody for ubiquitin (Ub) phosphorylated at serine 65 (pUb) has significant off-targets that appear during mitosis. These off-targets are connected to polo-like kinase 1 (PLK1) mediated phosphorylation of cell cycle-related proteins and the anaphase promoting complex subunit 1 (APC1).


Assuntos
Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular , Mitose , Processamento de Proteína Pós-Traducional , Ubiquitina , Anticorpos/genética , Anticorpos/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Mitose/genética , Mitose/fisiologia , Fosforilação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Quinase 1 Polo-Like
8.
Semin Cell Dev Biol ; 132: 16-26, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35764457

RESUMO

Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.


Assuntos
COVID-19 , Interferons , Humanos , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Ubiquitina/metabolismo , Antivirais , Poliproteínas , Imunidade , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitina Tiolesterase
9.
Nat Commun ; 12(1): 6173, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702852

RESUMO

The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Hipóxia Celular , Sobrevivência Celular , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Proteólise , Especificidade por Substrato , Ubiquitina/química , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação
10.
Chem Commun (Camb) ; 57(74): 9438-9441, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528945

RESUMO

Protein post-translational modifications are involved in essentially all aspects of cellular signaling. Their dynamic nature and the difficulties in installing them using enzymatic approaches limits their direct study in human cells. Reported herein is the first synthesis, delivery and cellular study of a stable phosphoubiquitin probe. Our results compare Parkin's substrate preference during mitophagy via direct visualization of a phosphorylated ubiquitin probe in the cellular environment.


Assuntos
Sondas Moleculares/metabolismo , Ubiquitina/metabolismo , Linhagem Celular Tumoral , Humanos , Sondas Moleculares/química , Estrutura Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Ubiquitina/química
11.
Redox Biol ; 45: 102047, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175667

RESUMO

The contribution of the Ubiquitin-Proteasome System (UPS) to mitophagy has been largely attributed to the E3 ubiquitin ligase Parkin. Here we show that in response to the oxidative stress associated with hypoxia or the hypoxia mimic CoCl2, the damaged and fragmented mitochondria are removed by Parkin-independent mitophagy. Mitochondria isolated from hypoxia or CoCl2-treated cells exhibited extensive ubiquitination, predominantly Lysine 48-linked and involves the degradation of key mitochondrial proteins such as the mitofusins MFN1/2, or the import channel component TOM20. Reflecting the critical role of mitochondrial protein degradation, proteasome inhibition blocked CoCl2-induced mitophagy. The five conserved ubiquitin-binding autophagy receptors (p62, NDP52, Optineurin, NBR1, TAX1BP1) were dispensable for the ensuing mitophagy, suggesting that the mitophagy step itself was independent of ubiquitination. Instead, the expression of two ubiquitin-independent mitophagy receptor proteins BNIP3 and NIX was induced by hypoxia or CoCl2-treatment followed by their recruitment to the oxidation-damaged mitochondria. By employing BNIP3/NIX double knockout and DRP1-null cell lines, we confirmed that mitochondrial clearance relies on DRP1-dependent mitochondrial fragmentation and BNIP3/NIX-mediated mitophagy. General antioxidants such as N-Acetyl Cysteine (NAC) or the mitochondria-specific Mitoquinone prevented HIF-1α stabilization, ameliorated hypoxia-related mitochondrial oxidative stress, and suppressed mitophagy. We conclude that the UPS and receptor-mediated autophagy converge to eliminate oxidation-damaged mitochondria.


Assuntos
Mitocôndrias , Mitofagia , Células HeLa , Humanos , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Ubiquitinação
12.
Biochem Soc Trans ; 49(2): 629-644, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33729481

RESUMO

Ubiquitination is the major criteria for the recognition of a substrate-protein by the 26S proteasome. Additionally, a disordered segment on the substrate - either intrinsic or induced - is critical for proteasome engagement. The proteasome is geared to interact with both of these substrate features and prepare it for degradation. To facilitate substrate accessibility, resting proteasomes are characterised by a peripheral distribution of ubiquitin receptors on the 19S regulatory particle (RP) and a wide-open lateral surface on the ATPase ring. In this substrate accepting state, the internal channel through the ATPase ring is discontinuous, thereby obstructing translocation of potential substrates. The binding of the conjugated ubiquitin to the ubiquitin receptors leads to contraction of the 19S RP. Next, the ATPases engage the substrate at a disordered segment, energetically unravel the polypeptide and translocate it towards the 20S catalytic core (CP). In this substrate engaged state, Rpn11 is repositioned at the pore of the ATPase channel to remove remaining ubiquitin modifications and accelerate translocation. C-termini of five of the six ATPases insert into corresponding lysine-pockets on the 20S α-ring to complete 20S CP gate opening. In the resulting substrate processing state, the ATPase channel is fully contiguous with the translocation channel into the 20S CP, where the substrate is proteolyzed. Complete degradation of a typical ubiquitin-conjugate takes place over a few tens of seconds while hydrolysing tens of ATP molecules in the process (50 kDa/∼50 s/∼80ATP). This article reviews recent insight into biochemical and structural features that underlie substrate recognition and processing by the 26S proteasome.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Ubiquitina/química , Ubiquitinação , Animais , Humanos , Cinética , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo
13.
Biomolecules ; 11(2)2021 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498876

RESUMO

Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the ß-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical ß-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Catálise , Domínio Catalítico , Citoplasma/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Microscopia de Força Atômica , Estresse Oxidativo , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteólise , Proteoma , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitinação
14.
Biomolecules ; 10(11)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207558

RESUMO

Mitochondria are constantly subjected to stressful conditions due to their unique physiology and organization. The resulting damage leads to mitochondrial dysfunction, which underlies many pathophysiological conditions. Hence, constant surveillance is required to closely monitor mitochondrial health for sound maintenance of cellular metabolism and thus, for viability. In addition to internal mitochondrial chaperones and proteases, mitochondrial health is also governed by host cell protein quality control systems. The ubiquitin-proteasome system (UPS) and autophagy constitute the main pathways for removal of damaged or superfluous proteins in the cytosol, nucleus, and from certain organelles such as the Endoplasmic Reticulum (ER) and mitochondria. Although stress-induced ubiquitin-dependent degradation of mitochondrial outer membrane proteins has been widely studied, mechanisms of intramitochondrial protein ubiquitination has remained largely elusive due to the predominantly cytosolic nature of UPS components, separated from internal mitochondrial proteins by a double membrane. However, recent research has illuminated examples of intramitochondrial protein ubiquitination pathways and highlighted their importance under basal and stressful conditions. Owing to the dependence of mitochondria on the error-prone process of protein import from the cytosol, it is imperative that the cell eliminate any accumulated proteins in the event of mitochondrial protein import deficiency. Apparently, a significant portion of this activity involves ubiquitination in one way or another. In the present review article, following a brief introduction to mitochondrial protein quality control mechanisms, we discuss our recent understanding of intramitochondrial protein ubiquitination, its importance for basal function of mitochondria, metabolic implications, and possible therapeutic applications.


Assuntos
Metabolismo Energético/fisiologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Retículo Endoplasmático/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
15.
J Am Chem Soc ; 142(46): 19558-19569, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33136379

RESUMO

The maleimide group is a widely used reagent for bioconjugation of peptides, proteins, and oligonucleotides employing Michael addition and Diels-Alder cycloaddition reactions. However, the utility of this functionality in chemical synthesis of peptides and proteins remains unexplored. We report, for the first time that PdII complexes can mediate the efficient removal of various succinimide derivatives in aqueous conditions. Succinimide removal by PdII was applied for the synthesis of two ubiquitin activity-based probes (Ub-ABPs) employing solid phase chemical ligation (SPCL). SPCL was achieved through a sequential three segment ligation on a polymer support via a maleimide anchor. The obtained probes successfully formed the expected covalent complexes with deubiquitinating enzymes (DUBs) USP2 and USP7, highlighting the use of our new method for efficient preparation of unique synthetic proteins. Importantly, we demonstrate the advantages of our newly developed method for the protection and deprotection of native cysteine with a succinimide group in a peptide fragment derived from thioredoxin-1 (Trx-1) obtained via intein based expression to enable ligation/desulfurization and subsequent disulfide bond formation in a one-pot process.


Assuntos
Complexos de Coordenação/química , Cisteína/química , Paládio/química , Peptídeos/química , Proteínas/síntese química , Succinimidas/química , Catálise , Reação de Cicloadição , Dissulfetos/química , Globinas/síntese química , Inteínas , Maleimidas/química , Técnicas de Síntese em Fase Sólida , Tiazolidinas/química , Tiorredoxinas/síntese química , Ubiquitina/química , Ubiquitina Tiolesterase/química
16.
J Proteomics ; 229: 103949, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32882436

RESUMO

Strict quality control for mitochondrial proteins is necessary to ensure cell homeostasis. Two cellular pathways-Ubiquitin Proteasome System (UPS) and autophagy-contribute to mitochondrial homeostasis under stressful conditions. Here, we investigate changes to the mitochondria proteome and to the ubiquitin landscape at mitochondria in response to proteasome inhibition. Treatment of HeLa cells devoid of Parkin, the primary E3 ligase responsible for mitophagy, with proteasome inhibitor MG132 for a few hours caused mitochondrial oxidative stress and fragmentation, reduced energy output, and increased mitochondrial ubiquitination without inducing mitophagy. Overexpression of Parkin did not show any induction of mitophagy in response to MG132 treatment. Analysis of ubiquitin chains on isolated mitochondria revealed predominance of K48, K29 and K63-linked polyubiquitin. Interestingly, of all ubiquitinated mitochondrial proteins detected in response to MG132 treatment, a majority (≥90%) were intramitochondrial irrespective of Parkin expression. However, overall levels of these ubiquitinated mitochondrial proteins did not change significantly upon proteasome inhibition when evaluated by quantitative proteomics (LFQ and SILAC), suggesting that only a small portion are ubiquitinated under basal conditions. Another aspect of proteasome inhibition is significant enrichment of UPS, lysosomal and phagosomal components, and other heat shock proteins associated with isolated mitochondria. Taken together, our study highlights a critical role of UPS for ubiquitinating and removing imported proteins as part of a basal mitochondrial quality control system independent of Parkin. SIGNIFICANCE: As centers of cellular bioenergetics, numerous metabolic pathways and signaling cascades, the health of mitochondria is of utmost importance for ensuring cell survival. Due to their unique physiology, mitochondria are constantly subjected to damaging oxidative radicals (ROS) and protein import-related stress due to buildup of unfolded aggregate-prone proteins. Thus, for quality control purposes, mitochondria are constantly under surveillance by Autophagy and the Ubiquitin Proteasome System (UPS), both of which share ubiquitin as a common signal. The ubiquitin landscape of mitochondria has been studied in detail under stressful conditions, however, little is known about basal mitochondrial ubiquitination. Our study reveals that the extent of ubiquitination at mitochondria greatly increases upon proteasome inhibition, pointing to a large number of potential substrates for proteasomal degradation. Interestingly, most of the ubiquitination occurs on intramitochondrial proteins, components of the electron transport chain (ETC) and matrix-resident metabolic enzymes in particular. Moreover, numerous cytosolic UPS components, chaperones and autophagy-lysosomal proteins were recruited to mitochondria upon proteasome inhibition. Taken together, this suggests that the levels and functions of mitochondrial proteins are constantly regulated through ubiquitin-dependent proteasomal degradation even under basal conditions. Unclogging mitochondrial import channels may provide a mechanism to alleviate stress associated with mitochondrial protein import or to adapt cells according to their metabolic needs. Therefore, targeting the mitochondrial ubiquitination/deubiquitination machinery, such as improving the therapeutic potency of proteasome inhibitors, may provide an additional therapeutic arsenal against tumors.


Assuntos
Mitocôndrias , Complexo de Endopeptidases do Proteassoma , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
Biomolecules ; 9(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487956

RESUMO

The class of Cullin-RING E3 ligases (CRLs) selectively ubiquitinate a large portion of proteins targeted for proteolysis by the 26S proteasome. Before degradation, ubiquitin molecules are removed from their conjugated proteins by deubiquitinating enzymes, a handful of which are associated with the proteasome. The CRL activity is triggered by modification of the Cullin subunit with the ubiquitin-like protein, NEDD8 (also known as Rub1 in Saccharomyces cerevisiae). Cullin modification is then reversed by hydrolytic action of the COP9 signalosome (CSN). As the NEDD8-Rub1 catalytic cycle is not essential for the viability of S. cerevisiae, this organism is a useful model system to study the alteration of Rub1-CRL conjugation patterns. In this study, we describe two distinct mutants of Rpn11, a proteasome-associated deubiquitinating enzyme, both of which exhibit a biochemical phenotype characterized by high accumulation of Rub1-modified Cdc53-Cullin1 (yCul1) upon entry into quiescence in S. cerevisiae. Further characterization revealed proteasome 19S-lid-associated deubiquitination activity that authorizes the hydrolysis of Rub1 from yCul1 by the CSN complex. Thus, our results suggest a negative feedback mechanism via proteasome capacity on upstream ubiquitinating enzymes.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
18.
Mol Cell ; 73(6): 1150-1161.e6, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792173

RESUMO

The 26S proteasome is the ATP-dependent protease responsible for regulating the proteome of eukaryotic cells through degradation of mainly ubiquitin-tagged substrates. In order to understand how proteasome responds to ubiquitin signal, we resolved an ensemble of cryo-EM structures of proteasome in the presence of K48-Ub4, with three of them resolved at near-atomic resolution. We identified a conformation with stabilized ubiquitin receptors and a previously unreported orientation of the lid, assigned as a Ub-accepted state C1-b. We determined another structure C3-b with localized K48-Ub4 to the toroid region of Rpn1, assigned as a substrate-processing state. Our structures indicate that tetraUb induced conformational changes in proteasome could initiate substrate degradation. We also propose a CP gate-opening mechanism involving the propagation of the motion of the lid to the gate through the Rpn6-α2 interaction. Our results enabled us to put forward a model of a functional cycle for proteasomes induced by tetraUb and nucleotide.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquitina/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ligação Proteica , Conformação Proteica , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade , Ubiquitina/ultraestrutura , Ubiquitinação
19.
Structure ; 25(12): 1839-1855.e11, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29153505

RESUMO

The discovery of ubistatins, small molecules that impair proteasomal degradation of proteins by directly binding to polyubiquitin, makes ubiquitin itself a potential therapeutic target. Although ubistatins have the potential for drug development and clinical applications, the lack of structural details of ubiquitin-ubistatin interactions has impeded their development. Here, we characterized a panel of new ubistatin derivatives using functional and binding assays. The structures of ubiquitin complexes with ubistatin B and hemi-ubistatin revealed direct interactions with ubiquitin's hydrophobic surface patch and the basic/polar residues surrounding it. Ubistatin B binds ubiquitin and diubiquitin tighter than a high-affinity ubiquitin receptor and shows strong preference for K48 linkages over K11 and K63. Furthermore, ubistatin B shields ubiquitin conjugates from disassembly by a range of deubiquitinases and by the 26S proteasome. Finally, ubistatin B penetrates cancer cells and alters the cellular ubiquitin landscape. These findings highlight versatile properties of ubistatins and have implications for their future development and use in targeting ubiquitin-signaling pathways.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Quinolinas/química , Ácidos Sulfanílicos/química , Ubiquitinas/química , Sítios de Ligação , Linhagem Celular , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Quinolinas/farmacologia , Saccharomyces cerevisiae/enzimologia , Ácidos Sulfanílicos/farmacologia , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/metabolismo
20.
Cell Chem Biol ; 24(4): 443-457.e6, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28330605

RESUMO

Ubiquitin (Ub) signaling is a diverse group of processes controlled by covalent attachment of small protein Ub and polyUb chains to a range of cellular protein targets. The best documented Ub signaling pathway is the one that delivers polyUb proteins to the 26S proteasome for degradation. However, studies of molecular interactions involved in this process have been hampered by the transient and hydrophobic nature of these interactions and the lack of tools to study them. Here, we develop Ub-phototrap (UbPT), a synthetic Ub variant containing a photoactivatable crosslinking side chain. Enzymatic polymerization into chains of defined lengths and linkage types provided a set of reagents that led to identification of Rpn1 as a third proteasome ubiquitin-associating subunit that coordinates docking of substrate shuttles, unloading of substrates, and anchoring of polyUb conjugates. Our work demonstrates the value of UbPT, and we expect that its future uses will help define and investigate the ubiquitin interactome.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Poliubiquitina/química , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina/genética , Ubiquitinação/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...