Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 68: 126854, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34488184

RESUMO

BACKGROUND: Silver nanoparticles (AgNP) are largely used in nanotechnological products, but the real risks for human and environment are still poorly understood if we consider the effects of mixtures of AgNP and environmental contaminants, such as non-essential metals. METHODS: The aim of the present study was to investigate the cytotoxicity and toxicological interaction of AgNP (1-4 nm, 0.36 and 3.6 µg mL-1) and cadmium (Cd, 1 and 10 µM) mixtures. The murine macrophage cell line RAW 264.7 was used as a model. RESULTS: Effects were observed after a few hours (4 h) on reactive oxygen species (ROS) and became more pronounced after 24 h-exposure. Cell death occurred by apoptosis, and loss of cell viability (24 h-exposure) was preceded by increases of ROS levels and DNA repair foci, but not of NO levels. Co-exposure potentiated some effects (decrease of cell viability and increase of ROS and NO levels), indicating toxicological interaction. CONCLUSION: These effects are important findings that must be better investigated, since the interaction of Cd with AgNP from nanoproducts may impair the function of macrophages and represent a health risk for humans.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Cádmio/toxicidade , Cloreto de Cádmio , Linhagem Celular , Sobrevivência Celular , Humanos , Macrófagos , Nanopartículas Metálicas/toxicidade , Camundongos , Espécies Reativas de Oxigênio , Prata/toxicidade
2.
Environ Sci Pollut Res Int ; 24(19): 16228-16240, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28540546

RESUMO

In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.


Assuntos
Biomarcadores , Monitoramento Ambiental/métodos , Peixes , Medição de Risco , Animais , Brasil , Cidades , Humanos , Rios , Poluentes Químicos da Água
3.
Toxicol Mech Methods ; 26(4): 251-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27001549

RESUMO

Nanotechnology occupies a prominent space in economy and science due to the beneficial properties of nanomaterials. However, nanoparticles may pose risks to living organisms due to their adsorption and pro-oxidative properties. The aim of the current study was to investigate the effects of polymer-coated silver nanoparticles (AgNPs) and organochlorine pesticides (OCPs), as well as their combined effects on mouse peritoneal macrophages. Macrophages were isolated and exposed to three concentrations of AgNPs (groups: N1 = 30, N2 = 300 and N3 = 3000 ng.ml(-1)), two concentrations of OCPs (groups: P1 = 30 and P2 = 300 ng.ml(-1)) and the six possible combinations of these two contaminants for 24 h. AgNPs had irregular shape, Feret diameter of 8.7 ± 7.5 nm and zeta potential of -28.7 ± 3.9 mV in water and -10.7 ± 1.04 mV in culture medium. OCP mixtures and the lower concentrations of AgNPs had no detectable effects on cell parameters, but the highest AgNPs concentration showed high toxicity (trypan blue and MTT assays) resulting in morphological changes, increase of nitric oxide levels and phagocytic index. Foremost, the association of N3 and P2 led to distinct effects from those observed under single exposure.


Assuntos
Hidrocarbonetos Clorados/toxicidade , Macrófagos Peritoneais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Praguicidas/toxicidade , Prata/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Nanopartículas Metálicas/química , Camundongos , Microscopia Eletrônica de Varredura , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...