Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 7(10): 200328, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204445

RESUMO

Recency effects are well documented in the adult and infant literature: recognition and recall memory are better for recently occurring events. We explore recency effects in infant categorization, which does not merely involve memory for individual items, but the formation of abstract category representations. We present a computational model of infant categorization that simulates category learning in 10-month-olds. The model predicts that recency effects outweigh previously reported order effects for the same stimuli. According to the model, infant behaviour at test should depend mainly on the identity of the most recent training item. We evaluate these predictions in a series of experiments with 10-month-old infants. Our results show that infant behaviour confirms the model's prediction. In particular, at test infants exhibited a preference for a category outlier over the category average only if the final training item had been close to the average, rather than distant from it. Our results are consistent with a view of categorization as a highly dynamic process where the end result of category learning is not the overall average of all stimuli encountered, but rather a fluid representation that moves depending on moment-to-moment novelty. We argue that this is a desirable property of a flexible cognitive system that adapts rapidly to different contexts.

2.
Cogn Sci ; 33(4): 709-38, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21585482

RESUMO

A substantial body of experimental evidence has demonstrated that labels have an impact on infant categorization processes. Yet little is known regarding the nature of the mechanisms by which this effect is achieved. We distinguish between two competing accounts: supervised name-based categorization and unsupervised feature-based categorization. We describe a neurocomputational model of infant visual categorization, based on self-organizing maps, that implements the unsupervised feature-based approach. The model successfully reproduces experiments demonstrating the impact of labeling on infant visual categorization reported in Plunkett, Hu, and Cohen (2008). It mimics infant behavior in both the familiarization and testing phases of the procedure, using a training regime that involves only single presentations of each stimulus and using just 24 participant networks per experiment. The model predicts that the observed behavior in infants is due to a transient form of learning that might lead to the emergence of hierarchically organized categorical structure and that the impact of labels on categorization is influenced by the perceived similarity and the sequence in which the objects are presented. The results suggest that early in development, say before 12 months old, labels need not act as invitations to form categories nor highlight the commonalities between objects, but they may play a more mundane but nevertheless powerful role as additional features that are processed in the same fashion as other features that characterize objects and object categories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA