Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(15): 2074-2077, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293794

RESUMO

We examine peptide model systems designed to probe short-range N-H⋯OS sidechain-backbone hydrogen bonding involving amino acid residues with sidechain sulfoxide or sulfone functional groups and its effects on local conformations. A strong 7-membered ring hydrogen bond of this type accompanies an intra-residue N-H⋯OC interaction and stabilizes an extended backbone conformation in preference to classical folded structures.


Assuntos
Aminoácidos , Peptídeos , Ligação de Hidrogênio , Peptídeos/química , Conformação Molecular , Sulfóxidos
2.
Environ Sci Pollut Res Int ; 30(48): 105808-105828, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37721674

RESUMO

Microbial processes can influence the complex geochemical behaviour of the toxic metalloid antimony (Sb) in mining environments. The present study is aimed to evaluate the influence of microbial communities on the mobility of Sb from solid phases to water in different compartments and redox conditions of a mining site in southwest (SW) Spain. Samples of surface materials presenting high Sb concentrations, from two weathered mining waste dumps, and an aquatic sediment were incubated in slurries comparing oxic and anoxic conditions. The initial microbial communities of the three materials strongly differed. Incubations induced an increase of microbial biomass and an evolution of the microbial communities' structures and compositions, which diverged in different redox conditions. The presence of active bacteria always influenced the mobility of Sb, except in the neutral pH waste incubated in oxic conditions. The effect of active microbial activities in oxic conditions was dependent on the material: Sb oxic release was biologically amplified with the acidic waste, but attenuated with the sediment. Different bacterial genera involved in Sb, Fe and S oxidation or reduction were present and/or grew during incubation of each material. The results highlighted the wide diversity of microbial communities and metabolisms at the small geographic scale of a mining site and their strong implication in Sb mobility.


Assuntos
Antimônio , Microbiota , Antimônio/análise , Oxirredução , Bactérias , Mineração
3.
Phys Chem Chem Phys ; 25(35): 23923-23928, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642502

RESUMO

The magnesium channel controls Mg2+ concentration in the cell and plays an indispensable role in biological functions. The crystal structure of the Magnesium Transport E channel suggested that Mg2+ hydrated by 6 water molecules is transported through a selection filter consisting of COO- groups on two Asp residues. This Mg2+ motion implies successive pairing with -OOC-R and dissociation mediated by water molecules. For another divalent ion, however, it is known that RCOO-⋯Ca2+ cannot be separated even with 12 water molecules. From this discrepancy, we probe the structure of Mg2+(CH3COO-)(H2O)4-17 clusters by measuring the infrared spectra and monitoring the vibrational frequencies of COO- with the help of quantum chemistry calculations. The hydration by (H2O)6 is not enough to induce ion separation, and partially-separated or separated pairs are formed from 10 water molecules at least. These results suggest that the ion separation between Mg2+ and carboxylate ions in the selection-filter of the MgtE channel not only results from water molecules in their first hydration shell, but also from additional factors including water molecules and protein groups in the second solvation shell of Mg2+.

4.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446709

RESUMO

Hydrogen bonds (H-bonds) are ubiquitous in peptides and proteins and are central to the stabilization of their structures. Inter-residue H-bonds between non-adjacent backbone amide NH and C=O motifs lead to the well-known secondary structures of helices, turns and sheets, but it is recognized that other H-bonding modes may be significant, including the weak intra-residue H-bond (called a C5 H-bond) that implicates the NH and C=O motifs of the same amino acid residue. Peptide model compounds that adopt stable C5 H-bonds are not readily available and the so-called 2.05-helix, formed by successive C5 H-bonds, is an elusive secondary structure. Using a combination of theoretical chemistry and spectroscopic studies in both the gas phase and solution phase, we have demonstrated that derivatives of 3-amino-1-methylazetidine-3-carboxylic acid, Aatc(Me) can form sidechain-backbone N-H···N C6γ H-bonds that accompany-and thereby stabilize-C5 H-bonds. In the capped trimer of Aatc(Me), extended C5/C6γ motifs are sufficiently robust to challenge classical 310-helix formation in solution and the fully-extended 2.05-helix conformer has been characterized in the gas phase. Concurrent H-bonding support for successive C5 motifs is a new axiom for stabilizing the extended backbone secondary structure in short peptides.


Assuntos
Aminoácidos , Azetidinas , Aminoácidos/química , Proteínas/química , Peptídeos/química , Estrutura Secundária de Proteína , Ligação de Hidrogênio
5.
Chem Commun (Camb) ; 59(9): 1161-1164, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36625351

RESUMO

The δ conformation is a local secondary structure in proteins that implicates a πamide N-H⋯N interaction between a backbone N atom and the NH of the following residue. Small-molecule models thereof have been limited so far to rigid proline-type compounds. We show here that in derivatives of a cyclic amino acid with a sulphur atom in the γ-position, specific side-chain/backbone N-H⋯S interactions stabilize the δ conformation sufficiently to allow it to compete with classical C5 and C7 H-bonded conformers.


Assuntos
Amidas , Proteínas , Conformação Proteica , Estrutura Secundária de Proteína
6.
Chemosphere ; 311(Pt 2): 137086, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334736

RESUMO

This work aims to establish Sb mobility, its transfer to biota and its effect on soil health in a semi-arid climate. The results show the presence of stibnite (Sb2S3) as the main primary Sb compound, bindhemite (Pb2Sb2O6(O,OH)), and minor proportions of stibiconite (Sb3+(Sb5+)2O6(OH)) as oxidised Sb species. This research also observes very high total Sb contents in mining materials (max: 20,000 mg kg-1) and soils (400-3000 mg kg-1), with physical dispersion around mining materials restricted to 450 m. The soil-to-plant transfer is very low, (bioaccumulation factor: 0.0002-0.1520). Most Sb remains in a residual fraction (99.9%), a very low fraction is bound to Fe and Mn oxy-hydroxides or organic matter, and a negligible proportion of Sb is leachable. The higher Sb mobility rates has been found under oxidising conditions with a long contact time between solids and water. The main factors that explain the poor Sb mobility and dispersion in the mining area are the low annual rainfall rates that slow down the Sb mobilisation process and the scarce formation of oxidised Sb compounds. All these data suggest poor Sb (III) formation and a low toxicological risk in the area associated with past mining activities. The low mobility of Sb suggests advantages for future sustainable mining of such ore deposits in a semi-arid climate and is also indicative of the limitations of geochemical exploration in the search for new Sb deposits.

7.
Molecules ; 27(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35630640

RESUMO

The side-chain of methionine residues is long enough to establish NH⋯S H-bonds with neighboring carbonyl groups of the backbone, giving rise to so-called intra-residue 6δ and inter-residue 7δ H-bonds. The aim of the present article is to document how the substitution of sulfur with a selenium atom affects the H-bonding of the Met system. This was investigated both experimentally and theoretically by conformation-resolved optical spectroscopy, following an isolated molecule approach. The present work emphasizes the similarities of the Met and Sem residues in terms of conformational structures, energetics, NH⋯Se/S H-bond strength and NH stretch spectral shifts, but also reveals subtle behavior differences between them. It provides evidence for the sensitivity of the H-bonding network with the folding type of the Sem/Met side-chains, where a simple flip of the terminal part of the side-chain can induce an extra 50 cm-1 spectral shift of the NH stretch engaged in a 7δ NH⋯S/Se bond.


Assuntos
Metionina , Selênio , Peptídeos/química , Estrutura Secundária de Proteína , Proteínas/química , Análise Espectral
8.
Phys Chem Chem Phys ; 24(20): 12121-12125, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35545953

RESUMO

Microhydrated H2-tagged ion pairs (Ca2+, AcO-)(H2O)n=0-8 and (Ba2+, AcO-)(H2O)n=0-5 are investigated by IR photodissociation laser spectroscopy and DFT-D frequency calculations. The detailed picture of the first steps of ion dissociation reveals two mechanisms, where water molecules promote dissociation either directly or indirectly depending on the nature of the cation.


Assuntos
Metais Alcalinoterrosos , Água , Ácidos Carboxílicos , Cátions , Metais Alcalinoterrosos/química , Água/química
9.
Chemistry ; 28(25): e202200969, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35419892

RESUMO

Invited for the cover of this issue are David J. Aitken, Michel Mons, and co-workers at Université Paris-Saclay. The image depicts the investigation strategies used to document the intrinsic structures of an important secondary structure in proteins, the so-called Asx turn. Read the full text of the article at 10.1002/chem.202104328.


Assuntos
Proteínas , Humanos , Estrutura Secundária de Proteína , Proteínas/química
10.
Chemistry ; 28(25): e202104328, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175657

RESUMO

Models of asparagine-containing dipeptides specifically designed to favor intrinsic folding into an Asx turn were characterized both theoretically, by using quantum chemistry, and experimentally, by using laser spectroscopy in the gas phase. Both approaches provided evidence for the spontaneous folding of both the Asn-Ala and Asn-Gly dipeptide models into the most stable Asx turn, a conformation stabilized by a C10 H-bond that was very similar to a type II' ß-turn. In parallel, analysis of Asx turns implicating asparagine in crystallized protein structures in the Protein Data Bank revealed a sequence-dependent behavior. In Asn-Ala sequences, the Asx turn was found in conjunction with a type I ß-turn for which the first of the four defining residues was Asn. The observation that the Asx turn in these structures is mostly of type II' (i. e., its most stable innate structure) suggests that this motif might foster the formation and/or enhance the stability of the backbone ß-turn. In contrast, the Asx turns observed in Asn-Gly sequences extensively adopted a type II Asx-turn structure, thus suggesting that their formation should be ascribed to other factors, such as hydration. The fact that the Asx turn in a Asn-Gly sequence is also often found in combination with a hydrated ß-bulge supports the premise that a Asn-Gly sequence might efficiently promote the formation of the ß-bulge secondary structure.


Assuntos
Asparagina , Proteínas , Asparagina/química , Bases de Dados de Proteínas , Dipeptídeos/química , Estrutura Secundária de Proteína
11.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054802

RESUMO

The present benchmark calculations testify to the validity of time-dependent density functional theory (TD-DFT) when exploring the low-lying excited states potential energy surfaces of models of phenylalanine protein chains. Among three functionals suitable for systems exhibiting charge-transfer excited states, LC-ωPBE, CAM-B3LYP, and ωB97X-D, which were tested on a reference peptide system, we selected the ωB97X-D functional, which gave the best results compared to the approximate coupled-cluster singles and doubles (CC2) method. A quantitative agreement for both the geometrical parameters and the vibrational frequencies was obtained for the lowest singlet excited state (a ππ* state) of the series of capped peptides. In contrast, only a qualitative agreement was met for the corresponding adiabatic zero-point vibrational energy (ZPVE)-corrected excitation energies. Two composite protocols combining CC2 and DFT/TD-DFT methods were then developed to improve these calculations. Both protocols substantially reduced the error compared to CC2 and experiment, and the best of both even led to results of CC2 quality at a lower cost, thus providing a reliable alternative to this method for very large systems.


Assuntos
Teoria da Densidade Funcional , Modelos Moleculares , Fenilalanina/química , Proteínas/química , Conformação Molecular , Termodinâmica
12.
Chem Sci ; 12(44): 14826-14832, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820098

RESUMO

Nature makes extensive and elaborate use of hydrogen bonding to assemble and stabilize biomolecular structures. The shapes of peptides and proteins rely significantly on N-H⋯O[double bond, length as m-dash]C interactions, which are the linchpins of turns, sheets and helices. The C5 H-bond, in which a single residue provides both donor and acceptor, is generally considered too weak to force the backbone to adopt extended structures. Exploiting the synergy between gas phase (experimental and quantum chemistry) and solution spectroscopies to decipher IR spectroscopic data, this work demonstrates that the extended C5-based conformation in 4-membered ring heterocyclic α-amino acid derivatives is significantly stabilized by the formation of an N-H⋯X H-bond. In this synergic system the strength of the C5 interaction remains constant while the N-H⋯X H-bond strength, and thereby the support provided by it, varies with the heteroatom.

13.
Chemphyschem ; 22(23): 2442-2455, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34637180

RESUMO

The present work uses ATR-FTIR spectroscopy assisted by simulations in explicit solvent and frequency calculations to investigate the supramolecular structure of carboxylate alkali-metal ion pairs in aqueous solutions. ATR-FTIR spectra in the 0.25-4.0 M concentration range displayed cation-specific behaviors, which enabled the measurement of the appearance concentration thresholds of contact ion pairs between 1.9 and 2.6 M depending on the cation. Conformational explorations performed using a non-local optimization method associated to a polarizable force-field (AMOEBA), followed by high quantum chemistry level (RI-B97-D3/dhf-TZVPP) optimizations, mode-dependent scaled harmonic frequency calculations and electron density analyses, were used to identify the main supramolecular structures contributing to the experimental spectra. A thorough analysis enables us to reveal the mechanisms responsible for the spectroscopic sensitivity of the carboxylate group and the respective role played by the cation and the water molecules, highlighting the necessity of combining advanced experimental and theoretical techniques to provide a fair and accurate description of ion pairing.

14.
Chem Sci ; 12(8): 2803-2815, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34164044

RESUMO

UV chromophores are frequently used as probes of the molecular structure. In particular, they are sensitive to the electric field generated by the molecular environment, resulting in the observation of Stark effects on UV spectra. While these environment-induced electronic Stark effects (EI-ESE) are already used for conformational analysis in the condensed phase, this work explores the potential of such an approach when performed at much higher conformational resolution in the gas phase. By investigating model alkali benzylacetate and 4-phenylbutyrate ion pairs, where the electric field applied to the phenyl ring is chemically tuned by changing the nature of the alkali cation, this work demonstrates that precise conformational assignments can be proposed based on the correlation between the conformation-dependent calculated electric fields and the frequency of the electronic transitions observed in the experimental UV spectra. Remarkably, the sole analysis of Stark effects and fragmentation patterns in mass-selected UV spectra provided an accurate and complete conformational analysis, where spectral differences as small as a few cm-1 between electronic transitions were rationalized. This case study illustrates that the identification of EI-ESE together with their interpretation at the modest cost of a ground state electric field calculation qualify UV spectroscopy as a powerful tool for conformational analysis.

15.
Amino Acids ; 53(4): 621-633, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33743071

RESUMO

S-containing amino acids can lead to two types of local NH···S interactions which bridge backbone NH sites to the side chain to form either intra- or inter-residue H-bonds. The present work reports on the conformational preferences of S-methyl-L-cysteine, Cys(Me), using a variety of investigating tools, ranging from quantum chemistry simulations, gas-phase UV and IR laser spectroscopy, and solution state IR and NMR spectroscopies, on model compounds comprising one or two Cys(Me) residues. We demonstrate that in gas phase and in low polarity solution, the C- and N-capped model compound for one Cys(Me) residue adopts a preferred C5-C6γ conformation which combines an intra-residue N-H···O=C backbone interaction (C5) and an inter-residue N-H···S interaction implicating the side-chain sulfur atom (C6γ). In contrast, the dominant conformation of the C- and N-capped model compound featuring two consecutive Cys(Me) residues is a regular type I ß-turn. This structure is incompatible with concomitant C6γ interactions, which are no longer in evidence. Instead, C5γ interactions occur, that are fully consistent with the turn geometry and additionally stabilize the structure. Comparison with the thietane amino acid Attc, which exhibits a rigid cyclic side chain, pinpoints the significance of side chain flexibility for the specific conformational behavior of Cys(Me).


Assuntos
Cisteína/análogos & derivados , Cisteína/química , Gases , Ligação de Hidrogênio , Conformação Molecular , Teoria Quântica , Soluções , Análise Espectral
16.
Chem Rev ; 120(22): 12490-12562, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33152238

RESUMO

Combined IR and UV laser spectroscopic techniques in molecular beams merged with theoretical approaches have proven to be an ideal tool to elucidate intrinsic structural properties on a molecular level. It offers the possibility to analyze structural changes, in a controlled molecular environment, when successively adding aggregation partners. By this, it further makes these techniques a valuable starting point for a bottom-up approach in understanding the forces shaping larger molecular systems. This bottom-up approach was successfully applied to neutral amino acids starting around the 1990s. Ever since, experimental and theoretical methods developed further, and investigations could be extended to larger peptide systems. Against this background, the review gives an introduction to secondary structures and experimental methods as well as a summary on theoretical approaches. Vibrational frequencies being characteristic probes of molecular structure and interactions are especially addressed. Archetypal biologically relevant secondary structures investigated by molecular beam spectroscopy are described, and the influences of specific peptide residues on conformational preferences as well as the competition between secondary structures are discussed. Important influences like microsolvation or aggregation behavior are presented. Beyond the linear α-peptides, the main results of structural analysis on cyclic systems as well as on ß- and γ-peptides are summarized. Overall, this contribution addresses current aspects of molecular beam spectroscopy on peptides and related species and provides molecular level insights into manifold issues of chemical and biochemical relevance.


Assuntos
Peptídeos/química , Agregados Proteicos , Aminoácidos/química , Gases/química , Humanos , Ligação de Hidrogênio , Neuropeptídeos/química , Processos Fotoquímicos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
17.
Phys Chem Chem Phys ; 22(36): 20409-20420, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32914809

RESUMO

Models of protein chains containing a seleno-cysteine (Sec) residue have been investigated by gas phase laser spectroscopy in order to document the effect of the H-bonding properties of the SeH group in the folding of the Sec side chain, by comparison with recent data on Ser- and Cys-containing sequences. Experimental data, complemented by quantum chemistry calculations and natural bonding orbital (NBO) analyses, are interpreted in terms of the formation of a so-called 5γ intra-residue motif, which bridges the acceptor chalcogen atom of the side chain to the NH bond of the same residue. This local structure, in which the O/S/Se atom is close to the plane of the N-terminal side amide, is constrained by local backbone-side chain hyperconjugation effects involving the S and Se atoms. Theoretical investigations of the Cys/Sec side chain show that (i) this 5γ motif is an intrinsic feature of these residues, (ii) the corresponding H-bond is strongly non-linear and intrinsically weak, (iii) but enhanced by γ- and ß-turn secondary structures, which promote a more favorable 5γ H-bonding approach and distance. The resulting H-bonds are slightly stronger in selenocysteine than in cysteine, but nearly inexistent in serine, whose side chain in contrast behaves as a H-bonding donor. The modest spectral shifts of the Cys/Sec NH stretches measured experimentally reflect the moderate strength of the 5γ H-bonding, in agreement with the correlation obtained with a NBO-based H-bond strength indicator. The evolution along the Ser, Cys and Sec series emphasizes the compromise between the several factors that control the H-bonding in a hyperconjugation-constrained geometry, among them the chalcogen van der Waals and covalent radii. It also illustrates the 5γ H-bond enhancements with the Sec and Cys residues favoured by the constraints imposed by the γ- and ß-turn structures of the peptide chain.


Assuntos
Cisteína/química , Dipeptídeos/química , Selenocisteína/química , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Teoria Quântica , Serina/química , Análise Espectral/métodos
18.
Phys Chem Chem Phys ; 22(36): 20284-20294, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966425

RESUMO

A dual microwave and optical spectroscopic study of a capped cysteine amino acid isolated in a supersonic expansion, combined with quantum chemistry modelling, enabled us to characterize the conformational preferences of Cys embedded in a protein chain. IR/UV double resonance spectroscopy provided evidence for the coexistence of two conformers, assigned to folded and extended backbones (with classical C7 and C5 backbone H-bonding respectively), each of them additionally stabilized by specific main-chain/side-chain H-bonding, where the sulfur atom essentially plays the role of H-bond acceptor. The folded structure was confirmed by microwave spectroscopy, which demonstrated the validity of the DFT-D methods currently used in the field. These structural and spectroscopic results, complemented by a theoretical Natural Bond Orbital analysis, enabled us to document the capacity of the weakly polar -CH2-SH side chain of Cys to adapt itself to the intrinsic local preferences of the peptide backbone, i.e., a γ-turn or a ß-sheet extended secondary structure. The corresponding local H-bonding bridges the side chain acceptor S atom to the backbone NH donor site of the same or the next residue along the chain, through a 5- or a 6-membered ring respectively.


Assuntos
Cisteína/análogos & derivados , Dipeptídeos/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Micro-Ondas , Modelos Químicos , Conformação Proteica , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Termodinâmica
19.
Chem Sci ; 11(34): 9191-9197, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34123167

RESUMO

In addition to the classical N-H⋯O[double bond, length as m-dash]C non-covalent interaction, less conventional types of hydrogen bonding, such as N-H⋯S, may play a key role in determining the molecular structure. In this work, using theoretical calculations in combination with spectroscopic analysis in both gas phase and solution phase, we demonstrate that both these H-bonding modes exist simultaneously in low-energy conformers of capped derivatives of Attc, a thietane α-amino acid. 6-Membered ring inter-residue N-H⋯S interactions (C6γ), assisted by hyperconjugation between the thietane ring and the backbone, combine with 5-membered ring intra-residue backbone N-H⋯O[double bond, length as m-dash]C interactions (C5) to provide a C5-C6γ feature that stabilizes a planar geometry in the monomer unit. Two contiguous C5-C6γ features in the planar dimer implicate an unprecedented three-centre H-bond of the type C[double bond, length as m-dash]O⋯H(N)⋯SR2, while the trimer adopts two C5-C6γ features separated by a Ramachandran α-type backbone configuration. These low-energy conformers are fully characterized in the gas phase and support is presented for their existence in solution state.

20.
J Chem Theory Comput ; 16(1): 601-611, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31841332

RESUMO

Extensive benchmarking calculations are presented to assess the accuracy of the standard approximate coupled cluster singles and doubles method (CC2) in studying ππ* excited states properties of model protein chains containing a phenylalanine residue, namely capped peptides, whose ground state conformers adopt the prototypical secondary structural features of proteins. First, the dependence with the basis set of the CC2 excitation energies, CC2 geometry optimizations, and amide A region frequencies of the lowest ππ* excited state in a reference system, the N-acetylphenylalaninylamide, are investigated, and the results are compared with experimental data. Second, at the best level of theory determined, the CC2/aug(N,O,π)-cc-pVDZ//CC2/cc-pVDZ level, a series of capped peptides of increasing size and containing residues of different nature are investigated. Along the series, compared to the experimental values, a mean absolute error of 0.10 eV is achieved for the 0-0 transition energies with a systematic overestimation. In addition, mode-dependent linear scaling functions for the calculated frequencies of the amide A region have been determined from the set of 95 experimental frequencies available; they lead to a quantitative simulation of the observed shifts of the amide A region frequencies upon ππ* excitation (root-mean-square deviation of 5 cm-1). These results confirm the reliability of the CC2 method to characterize the lowest ππ* excited state of such medium-sized systems, emphasizing this class of theoretical approaches as a relevant spectroscopic tool, including for tasks as difficult as conformational assignment.


Assuntos
Peptídeos/química , Fenilalanina/química , Proteínas/química , Algoritmos , Modelos Moleculares , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...