Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(9): 15131-15144, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157361

RESUMO

Material characterisation and imaging applications using terahertz radiation have gained interest in the past few years due to their enormous potential for industrial applications. The availability of fast terahertz spectrometers or multi-pixel terahertz cameras has accelerated research in this domain. In this work, we present a novel vector-based implementation of the gradient descent algorithm to fit the measured transmission and reflection coefficients of multilayered objects to a scattering parameter-based model, without requiring any analytical formulation of the error function. We thereby extract thicknesses and refractive indices of the layers within a maximum 2% error margin. Using the precise thickness estimates, we further image a 50 nm-thick Siemens star deposited on a silicon substrate using wavelengths larger than 300 µm. The vector-based algorithm heuristically finds the error minimum where the optimisation problem cannot be analytically formulated, which can be utilised also for applications outside the terahertz domain.

2.
Opt Express ; 30(12): 21609-21620, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224876

RESUMO

Semiconductor saturable absorber mirrors (SESAMs) are key devices for passive mode locking of numerous laser types and have been implemented for a variety of operational wavelengths ranging from 800 nm to 2400 nm. However, for 1560 nm the fabrication of SESAMs based on the standard AlAs/GaAs material system requires highly strained InGaAs absorber layers, which reduce the device efficiency and compromise fragile long-term performance. Here, we present SESAMs for ultrashort pulse generation at 1560 nm that are grown entirely lattice-matched to InP and thus have the potential for less structural defects and a higher operational lifetime. A highly reflective InGaAlAs-InAlAs Bragg mirror is capped with a heavily iron doped InGaAs:Fe absorber layer, which facilitates an unprecedented combination of sub-picosecond carrier lifetime and high optical quality. Therefore, the presented SESAMs show ultrafast response (τA < 1 ps), low non-saturable losses and high effective modulation depth (ΔReff ≥ 5.8%). Moreover, a nearly anti-resonant SESAM design provides high saturation and roll-over fluence (Fsat ≥ 17  µJ/cm2, F2 ≥ 21 mJ/cm2). With these SESAMs, we show self-starting and stable mode locking of an erbium doped fiber laser at 80 MHz repetition rate, providing ultrashort optical pulses at 17.5  mW average power.

3.
Opt Express ; 30(13): 23896-23908, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225061

RESUMO

Electromagnetic waves in the terahertz (THz) frequency range are widely used in spectroscopy, imaging and sensing. However, commercial, table-top systems covering the entire frequency range from 100 GHz to 10 THz are not available today. Fiber-coupled spectrometers, which employ photoconductive antennas as emitters and receivers, show a bandwidth limited to 6.5 THz and some suffer from spectral artifacts above 4 THz. For these systems, we identify THz absorption in the polar substrate of the photoconductive antenna as the main reason for these limitations. To overcome them, we developed photoconductive membrane (PCM) antennas, which consist of a 1.2 µm-thin InGaAs layer bonded on a Si substrate. These antennas combine efficient THz generation and detection in InGaAs with absorption-free THz transmission through a Si substrate. With these devices, we demonstrate a fiber-coupled THz spectrometer with a total bandwidth of 10 THz and an artifact-free spectrum up to 6 THz. The PCM antennas present a promising path toward fiber-coupled, ultrabroadband THz spectrometers.

4.
Nat Commun ; 12(1): 1071, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594078

RESUMO

Broadband terahertz spectroscopy enables many promising applications in science and industry alike. However, the complexity of existing terahertz systems has as yet prevented the breakthrough of this technology. In particular, established terahertz time-domain spectroscopy (TDS) schemes rely on complex femtosecond lasers and optical delay lines. Here, we present a method for optoelectronic, frequency-modulated continuous-wave (FMCW) terahertz sensing, which is a powerful tool for broadband spectroscopy and industrial non-destructive testing. In our method, a frequency-swept optical beat signal generates the terahertz field, which is then coherently detected by photomixing, employing a time-delayed copy of the same beat signal. Consequently, the receiver current is inherently phase-modulated without additional modulator. Owing to this technique, our broadband terahertz spectrometer performs (200 Hz measurement rate, or 4 THz bandwidth and 117 dB peak dynamic range with averaging) comparably to state-of-the-art terahertz-TDS systems, yet with significantly reduced complexity. Thickness measurements of multilayer dielectric samples with layer-thicknesses down to 23 µm show its potential for real-world applications. Within only 0.2 s measurement time, an uncertainty of less than 2 % is achieved, the highest accuracy reported with continuous-wave terahertz spectroscopy. Hence, the optoelectronic FMCW approach paves the way towards broadband and compact terahertz spectrometers that combine fiber optics and photonic integration technologies.

5.
Sensors (Basel) ; 20(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375349

RESUMO

We present a fiber coupled transceiver head for terahertz (THz) time-domain reflection measurements. The monolithically integrated transceiver chip is based on iron (Fe) doped In0.53Ga0.47As (InGaAs:Fe) grown by molecular beam epitaxy. Due to its ultrashort electron lifetime and high mobility, InGaAs:Fe is very well suited as both THz emitter and receiver. A record THz bandwidth of 6.5 THz and a peak dynamic range of up to 75 dB are achieved. In addition, we present THz imaging in reflection geometry with a spatial resolution as good as 130 µm. Hence, this THz transceiver is a promising device for industrial THz sensing applications.

6.
Opt Lett ; 43(21): 5423-5426, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383023

RESUMO

In this Letter, we report on photoconductive terahertz (THz) detectors for 1550 nm excitation based on a low-temperature-grown InGaAs/InAlAs superlattice with a localized beryllium doping profile. With this approach, we address the inherent lifetime-mobility trade-off that arises, since trapping centers also act as scattering sites for photo-excited electrons. The localized doping of the InAlAs barrier only leads to faster electron trapping for a given mobility. As a result, we obtain THz detectors with more than 6 THz bandwidths and 70 dB dynamic ranges (DNRs) at 3 THz and 55 dB DNR at 4 THz. To the best of our knowledge, this is the highest DNR for photoconductive THz time-domain spectroscopy systems published so far.

7.
Opt Lett ; 41(22): 5262-5265, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842108

RESUMO

We present a fiber-coupled transceiver for THz time-domain spectroscopy, which combines an emitter and a receiver on a single photoconductive chip. With a bandwidth of 4.5 THz and a peak dynamic range larger than 70 dB, it allows for THz reflection measurements under normal incidence. This THz reflection head is a promising device for applications in such fields as material inspection and nondestructive testing.

8.
Opt Lett ; 40(15): 3544-7, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26258353

RESUMO

We report on, to the best of our knowledge, the first absolute terahertz (THz) power measurement of a photoconductive emitter developed for time-domain spectroscopy (TDS). The broadband THz radiation emitted by a photoconductor optimized for the excitation with 1550-nm femtosecond pulses was measured by an ultrathin pyroelectric thin-film (UPTF) detector. We show that this detector has a spectrally flat transmission between 100 GHz and 5 THz due to special conductive electrodes on both sides of the UPTF. Its flat responsivity allows the calibration with a standard detector that is traceable to the International System of Units (SI) at the THz detector calibration facility of PTB. Absolute THz power in the range from below 1 µW to above 0.1 mW was measured.

9.
Opt Lett ; 39(22): 6482-5, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25490499

RESUMO

We demonstrate a completely fiber-coupled terahertz (THz) time-domain spectrometer (TDS) system based on electronically controlled optical sampling with two erbium-doped femtosecond fiber lasers at a central wavelength of 1560 nm. The system employs optimized InGaAs/InAlAs photoconductive antennas for THz generation and detection. With this system, we achieve measurement rates of up to 8 kHz and up to 180 ps scan range. We further achieve 2 THz spectral bandwidth and a dynamic range of 76 dB at only 500 ms measurement time.

10.
Opt Express ; 22(16): 19411-22, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25321025

RESUMO

We investigate the influence of Beryllium (Be) doping on the performance of photoconductive THz detectors based on molecular beam epitaxy (MBE) of low temperature (LT) grown In(0.53)Ga(0.47)As/In(0.52)Al(0.48)As multilayer heterostructures (MLHS). We show how the optical excitation power affects carrier lifetime, detector signal, dynamic range and bandwidth in THz time domain spectroscopy (TDS) in dependence on Be-doping concentration. For optimal doping we measured a THz bandwidth in excess of 6 THz and a dynamic range of up to 90 dB.

11.
Opt Lett ; 38(20): 4197-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321958

RESUMO

A modified photoconductive receiver significantly improves the performance of photomixing-based continuous wave (cw) THz systems driven at the optical telecommunication wavelength of 1.5 µm. The achieved signal-to-noise ratio of 105 dB at 100 GHz and 70 dB at 1 THz, both for an integration time of 200 ms, are to our knowledge the highest numbers reported in literature for any optoelectronic cw THz system, including classical setups operating at 800 nm. The developed receiver allows for combining low cost and high performance in one system for the first time to our knowledge.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 2): 046201, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23214657

RESUMO

We examine changes in the dynamics of a semiconductor quantum-dot (QD) laser subject to optical feedback that correlate to changes in the QD laser band structure. By employing a microscopic model for the carrier-carrier scattering processes between the QDs and the carrier reservoir we are able to tune the carrier lifetimes in the QDs, e.g., by modifying the QD confinement energies or the pump current. By using numerical continuation methods as well as asymptotic theory we demonstrate that the feedback sensitivity crucially depends on these lifetimes through the damping of the turn-on oscillations, and small lifetimes on the order of this relaxation time scale lead to an increased feedback resistivity. Thus intelligent band structure engineering can lead to stable continuous wave operation of the laser over a large parameter range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...