Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38672470

RESUMO

Investigations on binding strength differences of non-covalent protein complex components were performed by mass spectrometry. T4 fibritin foldon (T4Ff) is a well-studied miniprotein, which together with its biotinylated version served as model system to represent a compactly folded protein to which an Intrinsically Disordered Region (IDR) was attached. The apparent enthalpies of the gas phase dissociation reactions of the homo-trimeric foldon F-F-F and of the homo-trimeric triply biotinylated foldon bF-bF-bF have been determined to be rather similar (3.32 kJ/mol and 3.85 kJ/mol) but quite distinct from those of the singly and doubly biotinylated hetero-trimers F-F-bF and F-bF-bF (1.86 kJ/mol and 1.08 kJ/mol). Molecular dynamics simulations suggest that the ground states of the (biotinylated) T4Ff trimers are highly symmetric and well comparable to each other, indicating that the energy levels of all four (biotinylated) T4Ff trimer ground states are nearly indistinguishable. The experimentally determined differences and/or similarities in enthalpies of the complex dissociation reactions are explained by entropic spring effects, which are noticeable in the T4Ff hetero-trimers but not in the T4Ff homo-trimers. A lowering of the transition state energy levels of the T4Ff hetero-trimers seems likely because the biotin moieties, mimicking intrinsically disordered regions (IDRs), induced asymmetries in the transition states of the biotinylated T4Ff hetero-trimers. This transition state energy level lowering effect is absent in the T4Ff homo-trimer, as well as in the triply biotinylated T4Ff homo-trimer. In the latter, the IDR-associated entropic spring effects on complex stability cancel each other out. ITEM-FIVE enabled semi-quantitative determination of energy differences of complex dissociation reactions, whose differences were modulated by IDRs attached to compactly folded proteins.


Assuntos
Mapeamento de Epitopos , Simulação de Dinâmica Molecular , Mapeamento de Epitopos/métodos , Dobramento de Proteína , Termodinâmica , Biotinilação , Multimerização Proteica , Espectrometria de Massas
2.
Eur J Mass Spectrom (Chichester) ; 29(5-6): 275, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37999747
3.
J Am Soc Mass Spectrom ; 34(9): 1957-1961, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37531352

RESUMO

Michael Przybylski (1948-2023) was a Polymer Chemist by training and devoted nearly his entire scientific life, almost 50 years, to mass spectrometry and its biomedical applications. After earning his PhD in Chemistry, there followed a Postdoc stay at the National Cancer Institute, Bethesda, MD, USA, and his habilitation at the University of Mainz, Germany. Soon thereafter, Michael Przybylski took the Chair for Analytical Chemistry at the University of Konstanz, Germany, where he served as Director of the Analytical Chemistry and Biopolymer Structure Analysis Laboratory. As Emeritus Michael Przybylski moved the Steinbeis Centre for Biopolymer Analytics and Biomedical Mass Spectrometry to Rüsselsheim, Germany. Michael Przybylski's research was from the beginning interdisciplinary-oriented and in many ways groundbreaking: leading to over 400 scientific papers published in internationally renowned journals and to about 25 patents. Michael Przybylski gave approximately 150 invited lectures and was awarded several scientific prizes. In recognition of his outstanding achievements and fruitful collaboration, he received the Doctorate of honor from the "Alexandru Ioan Cuza" University of Iasi, Romania. Michael Przybylski was the Director of the by him founded "Biopolymer Analytics and Biomedical Mass Spectrometry" research center until his sudden and unexpected death.


Assuntos
Distinções e Prêmios , Pesquisa Biomédica , Humanos , Masculino , Pesquisa Biomédica/história , História do Século XX , Pesquisadores
4.
J Immunol Methods ; 519: 113519, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419022

RESUMO

Dried serum spots that are well prepared can be attractive alternatives to frozen serum samples for shelving specimens in a medical or research center's biobank and mailing freshly prepared serum to specialized laboratories. During the pre-analytical phase, complications can arise which are often challenging to identify or are entirely overlooked. These complications can lead to reproducibility issues, which can be avoided in serum protein analysis by implementing optimized storage and transfer procedures. With a method that ensures accurate loading of filter paper discs with donor or patient serum, a gap in dried serum spot preparation and subsequent serum analysis shall be filled. Pre-punched filter paper discs with a 3 mm diameter are loaded within seconds in a highly reproducible fashion (approximately 10% standard deviation) when fully submerged in 10 µl of serum, named the "Submerge and Dry" protocol. Such prepared dried serum spots can store several hundred micrograms of proteins and other serum components. Serum-borne antigens and antibodies are reproducibly released in 20 µl elution buffer in high yields (approximately 90%). Dried serum spot-stored and eluted antigens kept their epitopes and antibodies their antigen binding abilities as was assessed by SDS-PAGE, 2D gel electrophoresis-based proteomics, and Western blot analysis, suggesting pre-punched filter paper discs as handy solution for serological tests.


Assuntos
Anticorpos , Filtração , Humanos , Reprodutibilidade dos Testes , Papel
5.
Eur J Mass Spectrom (Chichester) ; 29(5-6): 303-312, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259551

RESUMO

Pepsin, because of its optimal activity at low acidic pH, has gained importance in mass spectrometric proteome research as a readily available and easy-to-handle protease. Pepsin has also been study object of protein higher-order structure analyses, but questions about how to best investigate pepsin in-solution conformers still remain. We first determined dependencies of pepsin ion charge structures on solvent pH which indicated the in-solution existence of (a) natively folded pepsin (N) which by nanoESI-MS analysis gave rise to a narrow charge state distribution with an 11-fold protonated most intense ion signal, (b) unfolded pepsin (U) with a rather broad ion charge state distribution whose highest ion signal carried 25 protons, and (c) a compactly folded pepsin conformer (C) with a narrow charge structure and a 12-fold protonated ion signal in the center of its charge state envelope. Because pepsin is a protease, unfolded pepsin became its own substrate in solution at pH 6.6 since at this pH some portion of pepsin maintained a compact/native fold which displayed enzymatic activity. Subsequent mass spectrometric ITEM-TWO analyses of pepstatin A - pepsin complex dissociation reactions in the gas phase confirmed a very strong binding of pepstatin A by natively folded pepsin (N). ITEM-TWO further revealed the existence of two compactly folded in-solution pepsin conformers (Ca and Cb) which also were able to bind pepstatin A. Binding strengths of the respective compactly folded pepsin conformer-containing complexes could be determined and apparent gas phase complex dissociation constants and reaction enthalpies differentiated these from each other and from the pepstatin A - pepsin complex which had been formed from natively folded pepsin. Thus, ITEM-TWO turned out to be well suited to pinpoint in-solution pepsin conformers by interrogating quantitative traits of pepstatin A - pepsin complexes in the gas phase.


Assuntos
Pepsina A , Espectrometria de Massas por Ionização por Electrospray , Pepsina A/química , Pepsina A/metabolismo , Pepstatinas/química , Espectrometria de Massas por Ionização por Electrospray/métodos
6.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049857

RESUMO

Precision medicine requests accurate serological inspections to precisely stratify patients for targeted treatment. Intact transition epitope mapping analysis proved surrogate seroconversion of a model organism's serum when spiked with a monoclonal murine anti-Ovalbumin antibody (mAb) with epitope resolution. Isolation of the IgG fraction from blood serum applied two consecutive protein precipitation steps followed by ultrafiltration and resulted in an ESI-MS analysis-ready IgG preparation. For epitope mapping by epitope extraction, the Ovalbumin antigen was digested with trypsin. After desalting, the peptide mixture was added to the ESI-MS-ready IgG preparation from mAb-spiked serum and the solution was incubated to form an immune complex between the Ovalbumin-derived epitope peptide and the anti-Ovalbumin mAb. Then, the entire mixture of proteins and peptides was directly electrosprayed. Sorting of ions in the mass spectrometer's gas phase, dissociation of the immune complex ions by collision-induced dissociation, and recording of the epitope peptide ion that had been released from the immune complex proved the presence of the anti-Ovalbumin mAb in serum. Mass determination of the complex-released epitope peptide ion with isotope resolution is highly accurate, guaranteeing high specificity of this novel analysis approach, which is termed Intact Transition Epitope Mapping-Serological Inspections by Epitope EXtraction (ITEM-SIX).


Assuntos
Complexo Antígeno-Anticorpo , Peptídeos , Humanos , Animais , Camundongos , Mapeamento de Epitopos/métodos , Epitopos , Peptídeos/análise , Ovalbumina , Imunoglobulina G
7.
J Am Soc Mass Spectrom ; 34(2): 171-181, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656134

RESUMO

With Intact Transition Epitope Mapping-Thermodynamic Weak-force Order (ITEM-TWO) analysis in combination with molecular modeling, the phosphorylation-dependent molecular recognition motif of the anti-HpTGEKP antibody has been investigated with binary and ternary component mixtures consisting of antibody and (phospho-) peptides. Amino acid sequences have been selected to match either the antibody's recognition motif or the cancer-related zinc finger protein mutations and phosphorylations of the respective amino acid residues. Upon electrospraying of all the components of the mixtures, that is, hexapeptides, antibody, and intact immune complexes, the produced ions were subjected to mass spectrometric mass filtering. The antibody ions as well as the immune complex ions traversed into the mass spectrometer's collision chamber, whereas paths of unbound peptide ions were blocked prior to entering the collision cell. After dissociation of the multiply charged immune complexes in the gas phase, the complex-released peptide ions were recorded after having traversed the second mass filter. Complex-released peptides were unambiguously identified by their masses using mass analysis with isotope resolution. From the results of our studies with seven (phospho-) peptides with distinct amino acid sequences, which resembled either the antibody's binding motif or mutations, we conclude the following: (i) A negatively charged phospho group, located near the peptide's N-terminus is mandatory for antibody binding when placed on the peptide surface at a precise distance to the C-terminally located positively charged ε-amino group of a lysinyl residue. (ii) A bulky amino acid residue, such as the tyrosinyl residue at the N-terminal position of the (phospho-) threoninyl residue, abolishes antibody binding. (iii) Two closely spaced phospho groups negatively interfere with the surface polarity pattern and abolish antibody binding as well. (iv) Non-phosphorylated peptides are not binding partners of the anti-HpTGEKP antibody.


Assuntos
Complexo Antígeno-Anticorpo , Neoplasias , Humanos , Mapeamento de Epitopos/métodos , Fosforilação , Peptídeos/química , Íons , Aminoácidos , Dedos de Zinco
8.
Biomolecules ; 13(1)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36671572

RESUMO

Antibody-based point-of-care diagnostics have become indispensable for modern medicine. In-depth analysis of antibody recognition mechanisms is the key to tailoring the accuracy and precision of test results, which themselves are crucial for targeted and personalized therapy. A rapid and robust method is desired by which binding strengths between antigens and antibodies of concern can be fine-mapped with amino acid residue resolution to examine the assumedly serious effects of single amino acid polymorphisms on insufficiencies of antibody-based detection capabilities of, e.g., life-threatening conditions such as myocardial infarction. The experimental ITEM-FOUR approach makes use of modern mass spectrometry instrumentation to investigate intact immune complexes in the gas phase. ITEM-FOUR together with molecular dynamics simulations, enables the determination of the influences of individually exchanged amino acid residues within a defined epitope on an immune complex's binding strength. Wild-type and mutated epitope peptides were ranked according to their experimentally determined dissociation enthalpies relative to each other, thereby revealing which single amino acid polymorphism caused weakened, impaired, and even abolished antibody binding. Investigating a diagnostically relevant human cardiac Troponin I epitope for which seven nonsynonymous single nucleotide polymorphisms are known to exist in the human population tackles a medically relevant but hitherto unsolved problem of current antibody-based point-of-care diagnostics.


Assuntos
Aminoácidos , Complexo Antígeno-Anticorpo , Humanos , Mapeamento de Epitopos/métodos , Sequência de Aminoácidos , Epitopos/química
9.
Biomolecules ; 14(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38254624

RESUMO

Intact Transition Epitope Mapping-One-step Non-covalent force Exploitation (ITEM-ONE) analysis reveals an assembled epitope on the surface of Pertuzumab, which is recognized by the anti-Pertuzumab affimer 00557_709097. It encompasses amino acid residues NSGGSIYNQRFKGR, which are part of CDR2, as well as residues FTLSVDR, which are located on the variable region of Pertuzumab's heavy chain and together form a surface area of 1381.46 Å2. Despite not being part of Pertuzumab's CDR2, the partial sequence FTLSVDR marks a unique proteotypic Pertuzumab peptide. Binding between intact Pertuzumab and the anti-Pertuzumab affimer was further investigated using the Intact Transition Epitope Mapping-Thermodynamic Weak-force Order (ITEM-TWO) approach. Quantitative analysis of the complex dissociation reaction in the gas phase afforded a quasi-equilibrium constant (KD m0g#) of 3.07 × 10-12. The experimentally determined apparent enthalpy (ΔHm0g#) and apparent free energy (ΔGm0g#) of the complex dissociation reaction indicate that the opposite reaction-complex formation-is spontaneous at room temperature. Due to strong binding to Pertuzumab and because of recognizing Pertuzumab's unique partial amino acid sequences, the anti-Pertuzumab affimer 00557_709097 is considered excellently suitable for implementation in Pertuzumab quantitation assays as well as for the accurate therapeutic drug monitoring of Pertuzumab in biological fluids.


Assuntos
Anticorpos Monoclonais Humanizados , Mapeamento de Epitopos , Epitopos , Termodinâmica
10.
Chembiochem ; 23(20): e202200390, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35950614

RESUMO

Accurate formation of antibody-antigen complexes has been relied on in both, multitudes of scientific projects and ample therapeutic and diagnostic applications. Mass spectrometrically determined dissociation behavior of immune complexes with the anti-HpTGEKP antibody revealed that the ten most frequently occurring phospho-hexapeptide linker sequences from C2H2 zinc finger proteins could be divided into two classes: orthodox binders, where strong noncovalent interactions developed as anticipated, and unorthodox binders with deviating structures and weaker binding. Phosphorylation of threonine was compulsory for antibody binding in an orthodox manner. Gas phase dissociation energy determinations of seven C2H2 zinc finger protein linker phospho-hexapeptides with orthodox binding properties revealed a bipolar binding motif of the antibody paratope. Epitope peptides, which in addition to the negatively charged phospho-threonine residue were C-terminally flanked by positively charged residues provided stronger binding, i. e. dissociation was endothermic, than peptides with acidic amino acid residues at these positions, for which dissociation was exothermic.


Assuntos
Anticorpos Monoclonais , Complexo Antígeno-Anticorpo , Dedos de Zinco , Espectrometria de Massas , Epitopos/química , Peptídeos/química , Treonina , Aminoácidos Acídicos
11.
Eur Biophys J ; 51(4-5): 309-323, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35567623

RESUMO

The cell wall of Rhodococcus corynebacteroides formerly known as Nocardia corynebacteroides contains cell wall channels that are responsible for the cell wall permeability of this bacterium. Based on partial sequencing of the polypeptide subunits and a BLAST search, we identified one polypeptide of R. corynebacteroides (PorARc) and two polypeptides (PorARr and PorBRr) from the closely related bacterium Rhodococcus ruber. The corresponding genes, porARc (606 bp), porARr (702 bp), and porBRr (540 bp) are constituents of the known genome of R. corynebacteroides DSM-20151 and R. ruber DSM-43338, respectively. porARr and porBRr of R. ruber are possibly forming a common operon coding for the polypeptide subunits of the cell wall channel. The genes coding for PorARc and for PorARr and PorBRr without signal peptide were separately expressed in the porin-deficient Escherichia coli BL21DE3Omp8 strain and the proteins were purified to homogeneity. All proteins were checked for channel formation in lipid bilayers. PorARc formed channels with characteristics that were very similar to those of a previous study. The proteins PorARr and PorBRr expressed in E. coli could alone create channels in lipid bilayer membranes, despite the possibility that the two corresponding genes form a porin operon and that both subunits possibly form the cell wall channels in vivo. Based on amino acid sequence comparison of a variety of proteins forming cell wall channels in bacteria of the suborder Corynebacterineae, it seems very likely that PorARc, PorARr, and PorBRr are members of a huge family of proteins (PF09203) that form MspA-like cell wall channels.


Assuntos
Escherichia coli , Rhodococcus , Parede Celular/química , Parede Celular/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Peptídeos/metabolismo , Porinas/química , Rhodococcus/genética , Rhodococcus/metabolismo
12.
Medicina (Kaunas) ; 58(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35208550

RESUMO

Our study focuses on free energy calculations of SARS-CoV-2 spike protein receptor binding motives (RBMs) from wild type and variants of concern (VOCs), with emphasis on SARS-CoV-2 Omicron. Our computational analysis underlines the occurrence of positive selection processes that specify Omicron host adaption and bring changes on the molecular level into context with clinically relevant observations. Our free energy calculation studies regarding the interaction of Omicron's RBM with human angiotensin converting enzyme 2 (hACE2) indicate weaker binding to the receptor than Alpha's or Delta's RBMs. Upon weaker binding, fewer viruses are predicted to be generated in time per infected cell, resulting in a delayed induction of danger signals as a trade-off. Along with delayed immunogenicity and pathogenicity, more viruses may be produced in the upper respiratory tract, explaining enhanced transmissibility. Since in interdependence on the human leukocyte antigen type (HLA type), more SARS-CoV-2 Omicron viruses are assumed to be required to initiate inflammatory immune responses, and because of pre-existing partial immunity through previous infections and/or vaccinations, which mostly guard the lower respiratory tract, overall disease severity is expected to be reduced.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunidade Celular , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Eur Biophys J ; 51(1): 15-27, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34854958

RESUMO

Clostridium perfringens is a potent producer of a variety of toxins. Well studied from these are five toxins (alpha, Beta (CPB), epsilon, iota and CPE) that are produced by seven toxinotype strains (A-G) of C. perfringens. Besides these toxins, C. perfringens produces also another toxin that causes necrotizing enterocolitis in piglets. This toxin termed consensus Beta2 toxin (cCPB2) has a molecular mass of 27,620 Da and shows only little homology to CPB and no one to the other toxins of C. perfringens. Its primary action on cells remained unknown to date. cCPB2 was heterogeneously expressed as fusion protein with GST in Escherichia coli and purified to homogeneity. Although cCPB2 does not exhibit the typical structure of beta-stranded pore-forming proteins and contains no indication for the presence of amphipathic alpha-helices we could demonstrate that cCPB2 is a pore-forming component with an extremely high activity in lipid bilayers. The channels have a single-channel conductance of about 700 pS in 1 M KCl and are highly cation-selective as judged from selectivity measurements in the presence of salt gradients. The high cation selectivity is caused by the presence of net negative charges in or near the channel that allowed an estimate of the channel size being about 1.4 nm wide. Our measurements suggest that the primary effect of cCPB2 is the formation of cation-selective channels followed by necrotic enteritis in humans and animals. We searched in databases for homologs of cCPB2 and constructed a cladogram representing the phylogenetic relationship to the next relatives of cCPB2.


Assuntos
Clostridium perfringens , Bicamadas Lipídicas , Animais , Cátions , Humanos , Filogenia , Suínos
14.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638522

RESUMO

We investigated the influence of a solvent's composition on the stability of desorbed and multiply charged RNAse S ions by analyzing the non-covalent complex's gas-phase dissociation processes. RNAse S was dissolved in electrospray ionization-compatible buffers with either increasing organic co-solvent content or different pHs. The direct transition of all the ions and the evaporation of the solvent from all the in-solution components of RNAse S under the respective in-solution conditions by electrospray ionization was followed by a collision-induced dissociation of the surviving non-covalent RNAse S complex ions. Both types of changes of solvent conditions yielded in mass spectrometrically observable differences of the in-solution complexation equilibria. Through quantitative analysis of the dissociation products, i.e., from normalized ion abundances of RNAse S, S-protein, and S-peptide, the apparent kinetic and apparent thermodynamic gas-phase complex properties were deduced. From the experimental data, it is concluded that the stability of RNAse S in the gas phase is independent of its in-solution equilibrium but is sensitive to the complexes' gas-phase charge states. Bio-computational in-silico studies showed that after desolvation and ionization by electrospray, the remaining binding forces kept the S-peptide and S-protein together in the gas phase predominantly by polar interactions, which indirectly stabilized the in-bulk solution predominating non-polar intermolecular interactions. As polar interactions are sensitive to in-solution protonation, bio-computational results provide an explanation of quantitative experimental data with single amino acid residue resolution.


Assuntos
Biologia Computacional/métodos , Ribonucleases/química , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Fenômenos Biofísicos/fisiologia , Bovinos , Simulação por Computador , Ribonucleases/análise , Termodinâmica
15.
Rapid Commun Mass Spectrom ; 35(14): e9121, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33955049

RESUMO

RATIONALE: To open up new ways for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based patient screening, blood serum is the most preferred specimen because of its richness in patho-physiological information and due to ease of collection. To overcome deleterious freeze/thaw cycles and to reduce high costs for shipping and storage, we sought to develop a procedure which enables MALDI-MS protein profiling of blood serum proteins without the need for serum freezing. METHODS: Blood sera from patients/donors were divided into portions which after pre-incubation were fast frozen. Thawed aliquots were deposited on filter paper discs and air-dried at room temperature. Intact serum proteins were eluted with acid-labile detergent-containing solutions and were desalted by employing a reversed-phase bead system. Purified protein solutions were screened by MALDI-MS using standardized instrument settings. RESULTS: MALDI mass spectra from protein solutions which were eluted from filter paper discs and desalted showed on average 25 strong ion signals (mass range m/z 6000 to 10,000) from intact serum proteins (apolipoproteins, complement proteins, transthyretin and hemoglobin) and from proteolytic processing products. Semi-quantitative analysis of three ion pairs: m/z 6433 and 6631, m/z 8205 and 8916, as well as m/z 9275 and 9422, indicated that the mass spectra from either pre-incubated fast-frozen serum or pre-incubated dried serum spot eluted serum contained the same information on protein composition. CONCLUSIONS: A workflow that avoids the conventional cold-chain and yet enables the investigation of intact serum proteins and/or serum proteolysis products by MALDI-MS profiling was developed. The presented protocol tremendously broadens the clinical application of MALDI-MS and simultaneously allows a reduction in the costs for storage and shipping of serum samples. This will pave the way for clinical screening of patients also in areas with limited access to health care systems, and/or specialized laboratories.


Assuntos
Proteínas Sanguíneas/análise , Teste em Amostras de Sangue Seco/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto , Coleta de Amostras Sanguíneas , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez
16.
J Am Soc Mass Spectrom ; 32(1): 106-113, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32838528

RESUMO

Myoglobin (MG) is a biomarker for heart muscle injury, making it a potential target protein for early detection of myocardial infarction. Elevated myoglobin levels alone have low specificity for acute myocardial infarction (AMI) but in combination with cardiac troponin T have been considered highly efficient diagnostic biomarkers. Myoglobin is a monomeric heme protein with a molecular weight of 17 kDa that is found in skeletal and cardiac tissue as an intracellular storage unit of oxygen. MG consists of eight α-helices connected by loops and a heme group responsible for oxygen-binding. Monoclonal antibodies are widely used analytical tools in biomedical research and have been employed for immunoanalytical detection of MG. However, the epitope(s) recognized by MG antibodies have been hitherto unknown. Precise molecular identification of the epitope(s) recognized by antibodies is of key importance for the development of MG as a diagnostic biomarker. The epitope of a monoclonal MG antibody was identified by proteolytic epitope extraction mass spectrometry in combination with surface plasmon resonance (SPR) biosensor analysis. The MG antibody was immobilized both on an affinity microcolumn and a gold SPR chip. The SPR kinetic analysis provided an affinity-binding constant KD of 270 nM for MG. Binding of a tryptic peptide mixture followed by elution of the epitope from the SPR-MS affinity interface by mild acidification provided a single-epitope peptide located at the C-terminus [146-153] [YKELGFQG] of MG. The specificity and affinity of the epitope were ascertained by synthesis and affinity-mass spectrometric characterization of the epitope peptide.


Assuntos
Epitopos/imunologia , Mioglobina/imunologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Ressonância de Plasmônio de Superfície/métodos , Animais , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/imunologia , Biomarcadores , Epitopos/análise , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Mioglobina/química , Mapeamento de Peptídeos , Ressonância de Plasmônio de Superfície/instrumentação
17.
Molecules ; 25(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080923

RESUMO

Electrospray mass spectrometry is applied to determine apparent binding energies and quasi equilibrium dissociation constants of immune complex dissociation reactions in the gas phase. Myoglobin, a natural protein-ligand complex, has been used to develop the procedure which starts from determining mean charge states and normalized and averaged ion intensities. The apparent dissociation constant KD m0g#= 3.60 × 10-12 for the gas phase heme dissociation process was calculated from the mass spectrometry data and by subsequent extrapolation to room temperature to mimic collision conditions for neutral and resting myoglobin. Similarly, for RNAse S dissociation at room temperature a KD m0g#= 4.03 × 10-12 was determined. The protocol was tested with two immune complexes consisting of epitope peptides and monoclonal antibodies. For the epitope peptide dissociation reaction of the FLAG peptide from the antiFLAG antibody complex an apparent gas phase dissociation constant KD m0g#= 4.04 × 10-12 was calculated. Likewise, an apparent KD m0g#= 4.58 × 10-12 was calculated for the troponin I epitope peptide-antiTroponin I antibody immune complex dissociation. Electrospray mass spectrometry is a rapid method, which requires small sample amounts for either identification of protein-bound ligands or for determination of the apparent gas phase protein-ligand complex binding strengths.


Assuntos
Complexo Antígeno-Anticorpo/química , Epitopos/química , Complexos Multiproteicos/química , Mioglobina/química , Anticorpos/química , Anticorpos/imunologia , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/imunologia , Epitopos/imunologia , Heme/química , Heme/imunologia , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Ligantes , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Mioglobina/genética , Mioglobina/imunologia , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/imunologia , Peptídeos/química , Peptídeos/imunologia , Ribonucleases/química , Ribonucleases/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Antioxidants (Basel) ; 9(10)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993114

RESUMO

Origanum L. (Lamiaceae) is an important genus of medicinal and aromatic plants used in traditional medicine since ancient times as culinary herbs and remedies. The aim of the present study was to evaluate the chemical composition, as well as the biochemical and cellular activities of freshly prepared Origanum majorana L. essential oil (OmEO) in an Alzheimer's disease (AD) amyloid beta1-42 (Aß1-42) rat model. OmEO (1% and 3%) was inhaled for 21 consecutive days, while Aß1-42 was administered intracerebroventricularly to induce AD-like symptoms. Our data demonstrate that OmEO increased antioxidant activity and enhanced brain-derived neurotrophic factor (BDNF) expression, which in concert contributed to the improvement of cognitive function of animals. Moreover, OmEO presented beneficial effects on memory performance in Y-maze and radial arm-maze tests in the Aß1-42 rat AD model.

20.
J Biol Chem ; 295(44): 14987-14997, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32848020

RESUMO

Rapid diagnostic tests are first-line assays for diagnosing infectious diseases, such as malaria. To minimize false positive and false negative test results in population-screening assays, high-quality reagents and well-characterized antigens and antibodies are needed. An important property of antigen-antibody binding is recognition specificity, which best can be estimated by mapping an antibody's epitope on the respective antigen. We have cloned a malarial antigen-containing fusion protein, MBP-pfMSP119, in Escherichia coli, which then was structurally and functionally characterized before and after high pressure-assisted enzymatic digestion. We then used our previously developed method, intact transition epitope mapping-targeted high-energy rupture of extracted epitopes (ITEM-THREE), to map the area on the MBP-pfMSP119 antigen surface that is recognized by the anti-pfMSP119 antibody G17.12. We identified three epitope-carrying peptides, 386GRNISQHQCVKKQCPQNSGCFRHLDE411, 386GRNISQHQCVKKQCPQNSGCFRHLDEREE414, and 415CKCLLNYKQE424, from the GluC-derived peptide mixture. These peptides belong to an assembled (conformational) epitope on the MBP-pfMSP119 antigen whose identification was substantiated by positive and negative control experiments. In conclusion, our data help to establish a workflow to obtain high-quality control data for diagnostic assays, including the use of ITEM-THREE as a powerful analytical tool. Data are available via ProteomeXchange: PXD019717.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/imunologia , Epitopos/imunologia , Malária Falciparum/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Sequência de Aminoácidos , Animais , Complexo Antígeno-Anticorpo/imunologia , Western Blotting , Eletroforese em Gel de Poliacrilamida/métodos , Mapeamento de Epitopos/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...