Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J A Hadron Nucl ; 58(12): 239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514540

RESUMO

Neutron capture reaction cross sections on 74 Ge are of importance to determine 74 Ge production during the astrophysical slow neutron capture process. We present new resonance data on 74 Ge( n , γ ) reactions below 70 keV neutron energy. We calculate Maxwellian averaged cross sections, combining our data below 70 keV with evaluated cross sections at higher neutron energies. Our stellar cross sections are in agreement with a previous activation measurement performed at Forschungszentrum Karlsruhe by Marganiec et al., once their data has been re-normalised to account for an update in the reference cross section used in that experiment.

2.
Phys Rev Lett ; 118(16): 162502, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474931

RESUMO

A search for shape isomers in the ^{66}Ni nucleus was performed, following old suggestions of various mean-field models and recent ones, based on state-of-the-art Monte Carlo shell model (MCSM), all considering ^{66}Ni as the lightest nuclear system with shape isomerism. By employing the two-neutron transfer reaction induced by an ^{18}O beam on a ^{64}Ni target, at the sub-Coulomb barrier energy of 39 MeV, all three lowest-excited 0^{+} states in ^{66}Ni were populated and their γ decay was observed by γ-coincidence technique. The 0^{+} states lifetimes were assessed with the plunger method, yielding for the 0_{2}^{+}, 0_{3}^{+}, and 0_{4}^{+} decay to the 2_{1}^{+} state the B(E2) values of 4.3, 0.1, and 0.2 Weisskopf units (W.u.), respectively. MCSM calculations correctly predict the existence of all three excited 0^{+} states, pointing to the oblate, spherical, and prolate nature of the consecutive excitations. In addition, they account for the hindrance of the E2 decay from the prolate 0_{4}^{+} to the spherical 2_{1}^{+} state, although overestimating its value. This result makes ^{66}Ni a unique nuclear system, apart from ^{236,238}U, in which a retarded γ transition from a 0^{+} deformed state to a spherical configuration is observed, resembling a shape-isomerlike behavior.

3.
Appl Radiat Isot ; 70(7): 1337-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22154387

RESUMO

We report on a gamma-ray coincidence analysis using a mixed array of hyperpure germanium and cerium-doped lanthanum tri-bromide (LaBr3:Ce) scintillation detectors to study nuclear electromagnetic transition rates in the pico-to-nanosecond time regime in 33,34P and 33S following fusion-evaporation reactions between an 18O beam and an isotopically enriched 18O implanted tantalum target. Energies from decay gamma-rays associated with the reaction residues were measured in event-by-event coincidence mode, with the measured time difference information between the pairs of gamma-rays in each event also recorded using the ultra-fast coincidence timing technique. The experiment used the good full-energy peak resolution of the LaBr3:Ce detectors coupled with their excellent timing responses in order to determine the excited state lifetime associated with the lowest lying, cross-shell, Iπ=4- "intruder" state previously reported in the N=19 isotone 34P. The extracted lifetime is consistent with a mainly single-particle M2 multipolarity associated with a f7/2→d5/2 single particle transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...