Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725357

RESUMO

BACKGROUND AND PURPOSE: The dopamine D2 receptor is expressed as a short (D2S) and a long (D2L) isoform with 29 additional amino acids in the third intracellular loop. The D2S isoform shows higher presynaptic expression than the D2L isoform, and decreased D2S expression has recently been linked to an increased risk for schizophrenia. Here, we present the first investigation, at receptor isoform level, of kinetic differences in the G protein activation profiles of the D2S, compared with the D2L isoform. EXPERIMENTAL APPROACH: We employed a NanoBRET-based approach to G protein dissociation to interrogate the time-resolved coupling profile of 3×HA-tagged D2L and D2S to Gαi/o/z proteins in vitro. KEY RESULTS: Using dopamine as a D2 receptor agonist, we observed a more pronounced activation of Gαo and Gαz than Gαi proteins by D2L compared with D2S. This differentiation was not observed for D2S, which activated Gαo and Gαz with lower efficacy than D2L. These signalling differences were preserved on second messenger level and were not due to differences in receptor expression. Expanding to a set of seven full and partial D2 receptor agonists showed these effects were not restricted to dopamine but rather a mutual, receptor-associated property. Contrasting this trend, we found that D2S activated G proteins faster than D2L upon full receptor activation. CONCLUSION AND IMPLICATIONS: The findings highlight that both D2L and D2S are mechanistically able to activate all non-visual Gαi/o proteins. Thereby, they add to previous reports about isoform-specificity to certain Gαi/o proteins observed in specific cell types.

2.
Nucleic Acids Res ; 52(D1): D466-D475, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000391

RESUMO

G proteins are the major signal proteins of ∼800 receptors for medicines, hormones, neurotransmitters, tastants and odorants. GproteinDb offers integrated genomic, structural, and pharmacological data and tools for analysis, visualization and experiment design. Here, we present the first major update of GproteinDb greatly expanding its coupling data and structural templates, adding AlphaFold2 structure models of GPCR-G protein complexes and advancing the interactive analysis tools for their interfaces underlying coupling selectivity. We present insights on coupling agreement across datasets and parameters, including constitutive activity, agonist-induced activity and kinetics. GproteinDb is accessible at https://gproteindb.org.


Assuntos
Bases de Dados de Proteínas , Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Biologia Computacional , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Internet , Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Humanos
3.
Trends Pharmacol Sci ; 44(12): 978-990, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37914598

RESUMO

Serotonin is a neurotransmitter regulating numerous physiological processes also modulated by drugs, for example, schizophrenia, depression, migraine, and obesity. However, these drugs typically have adverse effects caused by promiscuous binding across 12 serotonin and more than 20 homologous receptors. Recently, structures of the entire serotonin receptor family uncovered molecular ligand recognition. Here, we present a map of 19 'selectivity hotspots', that is, nonconserved binding site residues governing selectivity via favorable target interactions or repulsive 'off-target' contacts. Furthermore, we review functional rationale from observed ligand-binding affinities and mutagenesis effects. Unifying knowledge underlying specific probes and drugs is critical toward the functional characterization of different receptors and alleviation of adverse effects.


Assuntos
Transtornos de Enxaqueca , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Serotonina , Ligantes , Sítios de Ligação
4.
ACS Chem Neurosci ; 14(15): 2727-2742, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37474114

RESUMO

Serotonergic psychedelics are described to have activation of the serotonin 2A receptor (5-HT2A) as their main pharmacological action. Despite their relevance, the molecular mechanisms underlying the psychedelic effects induced by certain 5-HT2A agonists remain elusive. One of the proposed hypotheses is the occurrence of biased agonism, defined as the preferential activation of certain signaling pathways over others. This study comparatively monitored the efficiency of a diverse panel of 4-position-substituted (and N-benzyl-derived) phenylalkylamines to induce recruitment of ß-arrestin2 (ßarr2) or miniGαq to the 5-HT2A, allowing us to assess structure-activity relationships and biased agonism. All test compounds exhibited agonist properties with a relatively large range of both EC50 and Emax values. Interestingly, the lipophilicity of the 2C-X phenethylamines was correlated with their efficacy in both assays but yielded a stronger correlation in the miniGαq- than in the ßarr2-assay. Molecular docking suggested that accommodation of the 4-substituent of the 2C-X analogues in a hydrophobic pocket between transmembrane helices 4 and 5 of 5-HT2A may contribute to this differential effect. Aside from previously used standard conditions (lysergic acid diethylamide (LSD) as a reference agonist and a 2 h activation profile to assess a compound's activity), serotonin was included as a second reference agonist, and the compounds' activities were also assessed using the first 30 min of the activation profile. Under all assessed circumstances, the qualitative structure-activity relationships remained unchanged. Furthermore, the use of two reference agonists allowed for the estimation of both "benchmark bias" (relative to LSD) and "physiology bias" (relative to serotonin).


Assuntos
Alucinógenos , Serotonina , Receptor 5-HT2A de Serotonina , Simulação de Acoplamento Molecular , Alucinógenos/farmacologia , Alucinógenos/química , Fenetilaminas/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
5.
Nat Commun ; 14(1): 4573, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516754

RESUMO

The class Frizzled of G protein-coupled receptors (GPCRs), consisting of ten Frizzled (FZD1-10) paralogs and Smoothened, remains one of the most enigmatic GPCR families. This class mediates signaling predominantly through Disheveled (DVL) or heterotrimeric G proteins. However, the mechanisms underlying pathway selection are elusive. Here we employ a structure-driven mutagenesis approach in combination with an extensive panel of functional signaling readouts to investigate the importance of conserved state-stabilizing residues in FZD5 for signal specification. Similar data were obtained for FZD4 and FZD10 suggesting that our findings can be extrapolated to other members of the FZD family. Comparative molecular dynamics simulations of wild type and selected FZD5 mutants further support the concept that distinct conformational changes in FZDs specify the signal outcome. In conclusion, we find that FZD5 and FZDs in general prefer coupling to DVL rather than heterotrimeric G proteins and that distinct active state micro-switches in the receptor are essential for pathway selection arguing for conformational changes in the receptor protein defining transducer selectivity.


Assuntos
Simulação de Dinâmica Molecular , Transdução de Sinais , Humanos , Conformação Molecular , Mutagênese , Transdutores
7.
Basic Clin Pharmacol Toxicol ; 132(6): 459-471, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36930875

RESUMO

The 57-mer full-length GPR15L(25-81) peptide has been identified as the principal endogenous agonist of the G protein-coupled receptor GPR15. Its main activity resides in the C-terminal 11-mer GPR15L(71-81), which has full efficacy but ~40-fold lower potency than the full-length peptide. Here, we systematically investigated the structure-activity relationship of GPR15L(71-81) by truncations/extensions, alanine-scanning, and N- and C-terminal capping. The synthesized peptide analogues were tested at GPR15 stably expressed in HEK293A cells using a homogenous time-resolved Förster resonance energy transfer-based Gi cAMP functional assay. We show that the C-terminal α carboxyl group and the residues Leu78 , Pro75 , Val74 , and Trp72 are critical for receptor interaction and contribute significantly to the peptide potency. Furthermore, we tested the ability of GPR15L(71-81), C-terminally amidated GPR15L(71-81), and GPR15L(25-81) to activate the three GPR15 receptor mutants in a bioluminescence resonance energy transfer-based G protein activation assay. The results demonstrate that the Lys192 and Glu272 residues in GPR15 are important for the potency of the GPR15L peptide. Overall, our study identifies critical residues in the peptide and receptor sequences for future drug design.


Assuntos
Peptídeos , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Relação Estrutura-Atividade
8.
J Med Chem ; 66(4): 3045-3057, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749163

RESUMO

Peptides targeting disease-relevant protein-protein interactions are an attractive class of therapeutics covering the otherwise undruggable space between small molecules and therapeutic proteins. However, peptides generally suffer from poor metabolic stability and low membrane permeability. Hence, peptide cyclization has become a valuable approach to develop linear peptide motifs into metabolically stable and potentially cell-permeable cyclic leads. Furthermore, cyclization of side chains, also known as "stapling", can stabilize particular secondary peptide structures. Here, we demonstrate that a comprehensive examination of cyclization strategies in terms of position, chemistry, and length is a prerequisite for the selection of optimal cyclic peptide scaffolds. Our systematic approach identifies cyclic APP dodecamer peptides targeting the phosphotyrosine binding domain of Mint2 with substantially improved affinity. We show that especially all-hydrocarbon stapling provides improved metabolic stability, a significantly stabilized secondary structure and membrane permeability.


Assuntos
Precursor de Proteína beta-Amiloide , Peptídeos Cíclicos , Ciclização , Peptídeos Cíclicos/química , Estrutura Secundária de Proteína , Precursor de Proteína beta-Amiloide/química , Ligação Proteica , Fosfotirosina/química
9.
Eur J Pharmacol ; 943: 175553, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736525

RESUMO

The orphan G protein-coupled receptor GPR139 is predominantly expressed in the central nervous system and has attracted considerable interest as a therapeutic target. However, the biological role of this receptor remains somewhat elusive, in part due to the lack of quality pharmacological tools to investigate GPR139 function. In an effort to understand GPR139 signaling and to identify improved compounds, in this study we performed virtual screening and analog searches, in combination with multiple pharmacological assays. We characterized GPR139-dependent signaling using previously published reference agonists in Ca2+ mobilization and inositol monophosphate accumulation assays, as well as a novel real-time GPR139 internalization assay. For the four reference agonists tested, the rank order of potency was conserved across signaling and internalization assays: JNJ-63533054 > Compound 1a ¼ Takeda > AC4 > DL43, consistent with previously reported values. We noted an increased efficacy of JNJ-63533054-mediated inositol monophosphate signaling and internalization, relative to Compound 1a. We then performed virtual screening for GPR139 agonist and antagonist compounds that were screened and validated in GPR139 functional assays. We identified four GPR139 agonists that were active in all assays, with similar or reduced potency relative to known compounds. Likewise, compound analogs selected based on GPR139 agonist and antagonist substructure searches behaved similarly to their parent compounds. Thus, we have characterized GPR139 signaling for multiple new ligands using G protein-dependent assays and a new real-time internalization assay. These data add to the GPR139 tool compound repertoire, which could be optimized in future medical chemistry campaigns.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Inositol
10.
Nucleic Acids Res ; 51(D1): D395-D402, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36395823

RESUMO

G protein-coupled receptors (GPCRs) are physiologically abundant signaling hubs routing hundreds of extracellular signal substances and drugs into intracellular pathways. The GPCR database, GPCRdb supports >5000 interdisciplinary researchers every month with reference data, analysis, visualization, experiment design and dissemination. Here, we present our fifth major GPCRdb release setting out with an overview of the many resources for receptor sequences, structures, and ligands. This includes recently published additions of class D generic residue numbers, a comparative structure analysis tool to identify functional determinants, trees clustering GPCR structures by 3D conformation, and mutations stabilizing inactive/active states. We provide new state-specific structure models of all human non-olfactory GPCRs built using AlphaFold2-MultiState. We also provide a new resource of endogenous ligands along with a larger number of surrogate ligands with bioactivity, vendor, and physiochemical descriptor data. The one-stop-shop ligand resources integrate ligands/data from the ChEMBL, Guide to Pharmacology, PDSP Ki and PubChem database. The GPCRdb is available at https://gpcrdb.org.


Assuntos
Bases de Dados de Proteínas , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Mutação , Receptores Acoplados a Proteínas G/química , Alinhamento de Sequência , Transdução de Sinais , Conformação Proteica
11.
Nat Commun ; 13(1): 7428, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460632

RESUMO

Recent studies have shown that G protein coupled receptors (GPCRs) show selective and promiscuous coupling to different Gα protein subfamilies and yet the mechanisms of the range of coupling preferences remain unclear. Here, we use Molecular Dynamics (MD) simulations on ten GPCR:G protein complexes and show that the location (spatial) and duration (temporal) of intermolecular contacts at the GPCR:Gα protein interface play a critical role in how GPCRs selectively interact with G proteins. We identify that some GPCR:G protein interface contacts are common across Gα subfamilies and others specific to Gα subfamilies. Using large scale data analysis techniques on the MD simulation snapshots we derive a spatio-temporal code for contacts that confer G protein selective coupling and validated these contacts using G protein activation BRET assays. Our results demonstrate that promiscuous GPCRs show persistent sampling of the common contacts more than G protein specific contacts. These findings suggest that GPCRs maintain contact with G proteins through a common central interface, while the selectivity comes from G protein specific contacts at the periphery of the interface.


Assuntos
Bioensaio , Simulação de Dinâmica Molecular , Projetos de Pesquisa
12.
J Med Chem ; 65(18): 12031-12043, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36099411

RESUMO

The serotonin 2A receptor (5-HT2AR) is the mediator of the psychedelic effects of serotonergic psychedelics, which have shown promising results in clinical studies for several neuropsychiatric indications. The 5-HT2AR is able to signal through the Gαq and ß-arrestin effector proteins, but it is currently not known how the different signaling pathways contribute to the therapeutic effects mediated by serotonergic psychedelics. In the present work, we have evaluated the subtype-selective 5-HT2AR agonist 25CN-NBOH and a series of close analogues for biased signaling at this receptor. These ligands were designed to evaluate the role of interactions with Ser1593×36. The lack of interaction between this hydroxyl moiety and Ser1593×36 resulted in detrimental effects on potency and efficacy in both ßarr2 and miniGαq recruitment assays. Remarkably, Gαq-mediated signaling was considerably more affected. This led to the development of the first efficacious ßarr2-biased 5-HT2AR agonists 4a-b and 6e-f, ßarr2 preferring, relative to lysergic acid diethylamide (LSD).


Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Receptor 5-HT2A de Serotonina , Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , beta-Arrestinas
13.
Mol Cell ; 82(14): 2681-2695.e6, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35714614

RESUMO

Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors.


Assuntos
Receptores Acoplados a Proteínas G , Serotonina , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
14.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302493

RESUMO

The recognition that individual GPCRs can activate multiple signaling pathways has raised the possibility of developing drugs selectively targeting therapeutically relevant ones. This requires tools to determine which G proteins and ßarrestins are activated by a given receptor. Here, we present a set of BRET sensors monitoring the activation of the 12 G protein subtypes based on the translocation of their effectors to the plasma membrane (EMTA). Unlike most of the existing detection systems, EMTA does not require modification of receptors or G proteins (except for Gs). EMTA was found to be suitable for the detection of constitutive activity, inverse agonism, biased signaling and polypharmacology. Profiling of 100 therapeutically relevant human GPCRs resulted in 1500 pathway-specific concentration-response curves and revealed a great diversity of coupling profiles ranging from exquisite selectivity to broad promiscuity. Overall, this work describes unique resources for studying the complexities underlying GPCR signaling and pharmacology.


Assuntos
Técnicas Biossensoriais , Proteínas de Ligação ao GTP , Técnicas Biossensoriais/métodos , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
15.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302494

RESUMO

Two-thirds of human hormones and one-third of clinical drugs act on membrane receptors that couple to G proteins to achieve appropriate functional responses. While G protein transducers from literature are annotated in the Guide to Pharmacology database, two recent large-scale datasets now expand the receptor-G protein 'couplome'. However, these three datasets differ in scope and reported G protein couplings giving different coverage and conclusions on G protein-coupled receptor (GPCR)-G protein signaling. Here, we report a common coupling map uncovering novel couplings supported by both large-scale studies, the selectivity/promiscuity of GPCRs and G proteins, and how the co-coupling and co-expression of G proteins compare to the families from phylogenetic relationships. The coupling map and insights on GPCR-G protein selectivity will catalyze advances in receptor research and cellular signaling toward the exploitation of G protein signaling bias in design of safer drugs.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
16.
Br J Pharmacol ; 179(14): 3651-3674, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106752

RESUMO

GPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signalling' paradigm requires that we now characterize physiological signalling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signalling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Descoberta de Drogas , Ligantes , Reprodutibilidade dos Testes
17.
Cell Chem Biol ; 29(2): 226-238.e4, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34302750

RESUMO

G-protein-coupled receptors (GPCRs) represent the largest family of drug targets. Upon activation, GPCRs signal primarily via a diverse set of heterotrimeric G proteins. Most GPCRs can couple to several different G protein subtypes. However, how drugs act at GPCRs contributing to the selectivity of G protein recognition is poorly understood. Here, we examined the G protein selectivity profile of the dopamine D2 receptor (D2), a GPCR targeted by antipsychotic drugs. We show that D2 discriminates between six individual members of the Gi/o family, and its profile of functional selectivity is remarkably different across its ligands, which all engaged D2 with a distinct G protein coupling pattern. Using structural modeling, receptor mutagenesis, and pharmacological evaluation, we identified residues in the D2 binding pocket that shape these ligand-directed biases. We further provide pharmacogenomic evidence that natural variants in D2 differentially affect its G protein biases in response to different ligands.


Assuntos
Antipsicóticos/farmacologia , Haloperidol/farmacologia , Receptores de Dopamina D2/metabolismo , Antipsicóticos/química , Células HEK293 , Haloperidol/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
18.
Nucleic Acids Res ; 50(D1): D518-D525, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34570219

RESUMO

Two-thirds of signaling substances, several sensory stimuli and over one-third of drugs act via receptors coupling to G proteins. Here, we present an online platform for G protein research with reference data and tools for analysis, visualization and design of scientific studies across disciplines and areas. This platform may help translate new pharmacological, structural and genomic data into insights on G protein signaling vital for human physiology and medicine. The G protein database is accessible at https://gproteindb.org.


Assuntos
Bases de Dados de Proteínas , Proteínas de Ligação ao GTP/metabolismo , Medicamentos sob Prescrição/química , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/química , Software , Sequência de Aminoácidos , Sítios de Ligação , Células Eucarióticas/citologia , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/metabolismo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Anotação de Sequência Molecular , Mutação , Medicamentos sob Prescrição/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
20.
Mol Brain ; 14(1): 173, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872607

RESUMO

Dopamine (DA) and norepinephrine (NE) are pivotal neuromodulators that regulate a broad range of brain functions, often in concert. Despite their physiological importance, untangling the relationship between DA and NE in the fine control of output function is currently challenging, primarily due to a lack of techniques to allow the observation of spatiotemporal dynamics with sufficiently high selectivity. Although genetically encoded fluorescent biosensors have been developed to detect DA, their poor selectivity prevents distinguishing DA from NE. Here, we report the development of a red fluorescent genetically encoded GPCR (G protein-coupled receptor)-activation reporter for DA termed 'R-GenGAR-DA'. More specifically, a circular permutated red fluorescent protein (cpmApple) was replaced by the third intracellular loop of human DA receptor D1 (DRD1) followed by the screening of mutants within the linkers between DRD1 and cpmApple. We developed two variants: R-GenGAR-DA1.1, which brightened following DA stimulation, and R-GenGAR-DA1.2, which dimmed. R-GenGAR-DA1.2 demonstrated a reasonable dynamic range (ΔF/F0 = - 43%), DA affinity (EC50 = 0.92 µM) and high selectivity for DA over NE (66-fold) in HeLa cells. Taking advantage of the high selectivity of R-GenGAR-DA1.2, we monitored DA in presence of NE using dual-color fluorescence live imaging, combined with the green-NE biosensor GRABNE1m, which has high selectivity for NE over DA (> 350-fold) in HeLa cells and hippocampal neurons grown from primary culture. Thus, this is a first step toward the multiplex imaging of these neurotransmitters in, for example, freely moving animals, which will provide new opportunities to advance our understanding of the high spatiotemporal dynamics of DA and NE in normal and abnormal brain function.


Assuntos
Técnicas Biossensoriais , Dopamina , Animais , Dopamina/metabolismo , Células HeLa , Humanos , Neurônios/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...