Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 30: 100581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711920

RESUMO

Background and purpose: Ion beams exhibit an increased relative biological effectiveness (RBE) with respect to photons. This study determined the RBE of oxygen ion beams as a function of linear energy transfer (LET) and dose in the rat spinal cord. Materials and methods: The spinal cord of rats was irradiated at four different positions of a 6 cm spread-out Bragg-peak (LET: 26, 66, 98 and 141 keV/µm) using increasing levels of single and split oxygen ion doses. Dose-response curves were established for the endpoint paresis grade II and based on ED50 (dose at 50 % effect probability), the RBE was determined and compared to model predictions. Results: When LET increased from 26 to 98 keV/µm, ED50 decreased from 17.2 ± 0.3 Gy to 13.5 ± 0.4 Gy for single and from 21.7 ± 0.4 Gy to 15.5 ± 0.5 Gy for split doses, however, at 141 keV/µm, ED50 rose again to 15.8 ± 0.4 Gy and 17.2 ± 0.4 Gy, respectively. As a result, the RBE increased from 1.43 ± 0.05 to 1.82 ± 0.08 (single dose) and from 1.58 ± 0.04 to 2.21 ± 0.08 (split dose), respectively, before declining again to 1.56 ± 0.06 for single and 1.99 ± 0.06 for split doses at the highest LET. Deviations from RBE-predictions were model-dependent. Conclusion: This study established first RBE data for the late reacting central nervous system after single and split doses of oxygen ions. The data was used to validate the RBE-dependence on LET and dose of three RBE-models. This study extends the existing data base for protons, helium and carbon ions and provides important information for future patient treatments with oxygen ions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38750905

RESUMO

PURPOSE: Hypoxia in tumors is associated with increased malignancy and resistance to conventional photon radiotherapy. This study investigated the potential of particle therapy to counteract radioresistance in syngeneic rat prostate carcinoma. METHODS AND MATERIALS: Subcutaneously transplanted R3327-HI tumors were irradiated with photons or carbon ions under acute hypoxic conditions, induced by clamping the tumor-supplying artery 10 min before and during irradiation. Dose-response curves were determined for the endpoint 'local tumor control within 300 days' and compared to previously published data acquired under oxic conditions. Doses at 50% tumor control probability (TCD50) were used to quantify hypoxia-induced radioresistance relative to oxic conditions, and the increased effectiveness of carbon ions under oxic and hypoxic conditions relative to photons. RESULTS: Compared to oxic conditions, TCD50-values under hypoxic conditions increased by a factor of 1.53±0.08 for photons and by 1.28±0.06 for carbon ions (oxygen enhancement ratio, OER). Compared to photons, TCD50-values for carbon ions decreased by a factor of 2.08±0.13 under oxic and by 2.49±0.08 under hypoxic conditions (relative biological effectiveness, RBE). While the slope of the photon dose-response curves increased when changing from oxic to hypoxic conditions, the slopes were steeper and remained unchanged for carbon ions. CONCLUSIONS: The reduced OER of carbon ions indicated that the required dose increase in hypoxic tumors was 17% lower for carbon ions than for photons. Additionally, carbon ions reduced the impact of inter-tumor heterogeneity on the radiation response. Therefore, carbon ions may be of significant advantage for the treatment of hypoxic tumors that are highly resistant to conventional photon radiotherapy. SUMMARY: In the investigated rat prostate tumor, the required dose increase under hypoxic conditions was 17% lower for carbon ions than for photons. Additionally, carbon ions reduced the impact of inter-tumor heterogeneity on the radiation response under ambient conditions. Therefore, carbon ions may be of significant advantage for the treatment of hypoxic tumors that are highly resistant to conventional photon radiotherapy.

3.
Z Med Phys ; 33(2): 155-167, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35868888

RESUMO

X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.


Assuntos
Tomografia Computadorizada por Raios X , Pesquisa Translacional Biomédica , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Tomógrafos Computadorizados , Meios de Contraste , Fótons
4.
Radiother Oncol ; 170: 224-230, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367526

RESUMO

BACKGROUND AND PURPOSE: Determination of the relative biological effectiveness (RBE) of helium ions as a function of linear energy transfer (LET) for single and split doses using the rat cervical spinal cord as model system for late-responding normal tissue. MATERIAL AND METHODS: The rat cervical spinal cord was irradiated at four different positions within a 6 cm spread-out Bragg-peak (SOBP) (LET 2.9, 9.4, 14.4 and 20.7 keV/µm) using increasing levels of single or split doses of helium ions. Dose-response curves were determined and based on TD50-values (dose at 50% effect probability using paresis II as endpoint), RBE-values were derived for the endpoint of radiation-induced myelopathy. RESULTS: With increasing LET, RBE-values increased from 1.13 ± 0.04 to 1.42 ± 0.05 (single dose) and 1.12 ± 0.03 to 1.50 ± 0.04 (split doses) as TD50-values decreased from 21.7 ± 0.3 Gy to 17.3 ± 0.3 Gy (single dose) and 30.6 ± 0.3 Gy to 22.9 ± 0.3 Gy (split doses), respectively. RBE-models (LEM I and IV, mMKM) deviated differently for single and split doses but described the RBE variation in the high-LET region sufficiently accurate. CONCLUSION: This study established the LET-dependence of the RBE for late effects in the central nervous system after single and split doses of helium ions. The results extend the existing database for protons and carbon ions and allow systematic testing of RBE-models. While the RBE-values of helium were generally lower than for carbon ions, the increase at the distal edge of the Bragg-peak was larger than for protons, making detailed RBE-modeling necessary.


Assuntos
Hélio , Transferência Linear de Energia , Animais , Carbono , Relação Dose-Resposta à Radiação , Humanos , Íons , Prótons , Ratos , Eficiência Biológica Relativa , Medula Espinal
5.
Radiother Oncol ; 165: 126-134, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634380

RESUMO

BACKGROUND AND PURPOSE: Radiation-induced myelopathy, an irreversible complication occurring after a long symptom-free latency time, is preceded by a fixed sequence of magnetic resonance- (MR-) visible morphological alterations. Vascular degradation is assumed the main reason for radiation-induced myelopathy. We used dynamic contrast-enhanced (DCE-) MRI to identify different vascular changes after photon and carbon ion irradiation, which precede or coincide with morphological changes. MATERIALS AND METHODS: The cervical spinal cord of rats was irradiated with iso-effective photon or carbon (12C-)ion doses. Afterwards, animals underwent frequent DCE-MR imaging until they developed symptomatic radiation-induced myelopathy (paresis II). Measurements were performed at certain time points: 1 month, 2 months, 3 months, 4 months, and 6 months after irradiation, and when animals showed morphological (such as edema/syrinx/contrast agent (CA) accumulation) or neurological alterations (such as, paresis I, and paresis II). DCE-MRI data was analyzed using the extended Toft's model. RESULTS: Fit quality improved with gradual disintegration of the blood spinal cord barrier (BSCB) towards paresis II. Vascular permeability increased three months after photon irradiation, and rapidly escalated after animals showed MR-visible morphological changes until paresis II. After 12C-ion irradiation, vascular permeability increased when animals showed morphological alterations and increased further until animals had paresis II. The volume transfer constant and the plasma volume showed no significant changes. CONCLUSION: Only after photon irradiation, DCE-MRI provides a temporal advantage in detecting early physiological signs in radiation-induced myelopathy compared to morphological MRI. As a generally lower level of vascular permeability after 12C-ions led to an earlier development of paresis as compared to photons, we conclude that other mechanisms dominate the development of paresis II.


Assuntos
Permeabilidade Capilar , Fótons , Animais , Carbono , Meios de Contraste , Relação Dose-Resposta à Radiação , Íons , Imageamento por Ressonância Magnética , Paresia , Ratos , Medula Espinal/diagnóstico por imagem
6.
Radiat Oncol ; 16(1): 63, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789720

RESUMO

BACKGROUND: Radiation-induced myelopathy is a severe and irreversible complication that occurs after a long symptom-free latency time if the spinal cord was exposed to a significant irradiation dose during tumor treatment. As carbon ions are increasingly investigated for tumor treatment in clinical trials, their effect on normal tissue needs further investigation to assure safety of patient treatments. Magnetic resonance imaging (MRI)-visible morphological alterations could serve as predictive markers for medicinal interventions to avoid severe side effects. Thus, MRI-visible morphological alterations in the rat spinal cord after high dose photon and carbon ion irradiation and their latency times were investigated. METHODS: Rats whose spinal cords were irradiated with iso-effective high photon (n = 8) or carbon ion (n = 8) doses as well as sham-treated control animals (n = 6) underwent frequent MRI measurements until they developed radiation-induced myelopathy (paresis II). MR images were analyzed for morphological alterations and animals were regularly tested for neurological deficits. In addition, histological analysis was performed of animals suffering from paresis II compared to controls. RESULTS: For both beam modalities, first morphological alterations occurred outside the spinal cord (bone marrow conversion, contrast agent accumulation in the musculature ventral and dorsal to the spinal cord) followed by morphological alterations inside the spinal cord (edema, syrinx, contrast agent accumulation) and eventually neurological alterations (paresis I and II). Latency times were significantly shorter after carbon ions as compared to photon irradiation. CONCLUSIONS: Irradiation of the rat spinal cord with photon or carbon ion doses that lead to 100% myelopathy induced a comparable fixed sequence of MRI-visible morphological alterations and neurological distortions. However, at least in the animal model used in this study, the observed MRI-visible morphological alterations in the spinal cord are not suited as predictive markers to identify animals that will develop myelopathy as the time between MRI-visible alterations and the occurrence of myelopathy is too short to intervene with protective or mitigative drugs.


Assuntos
Radioterapia com Íons Pesados/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Fótons/efeitos adversos , Lesões por Radiação/etiologia , Doenças da Medula Espinal/etiologia , Medula Espinal/efeitos da radiação , Animais , Feminino , Fótons/uso terapêutico , Lesões por Radiação/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Pele/efeitos da radiação , Medula Espinal/patologia , Doenças da Medula Espinal/diagnóstico por imagem
7.
Radiother Oncol ; 158: 131-137, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587966

RESUMO

PURPOSE: To quantify the fractionation dependence of carbon (12C) ions and photons in three rat prostate carcinomas differing in growth rate, differentiation and hypoxia. MATERIAL AND METHODS: Three sublines (AT1, HI, H) of syngeneic rat prostate tumors (R3327) were treated with six fractions of either 12C-ions or 6 MV photons. Dose-response curves were determined for the endpoint local tumor control within 300 days. The doses at 50% control probability (TCD50) and the relative biological effectiveness (RBE) of 12C-ions were calculated and compared with the values from single and split dose studies. RESULTS: Experimental findings for the three tumor sublines revealed (i) a comparably increased RBE (2.47-2.67), (ii) a much smaller variation of the radiation response for 12C-ions (TCD50: 35.8-43.7 Gy) than for photons (TCD50: 91.3-116.6 Gy), (iii) similarly steep (AT1) or steeper (HI, H) dose-response curves for 12C-ions than for photons, (iv) a larger fractionation effect for photons than for 12C-ions, and (v) a steeper increase of the RBE with decreasing fractional dose for the well-differentiated H- than for the less-differentiated HI- and AT1-tumors, reflected by (vi) the smallest α/ß-value for H-tumors after photon irradiation. CONCLUSION: 12C-ions reduce the radiation response heterogeneity between the three tumor sublines as well as within each subline relative to photon treatments, independently of fractionation. The dose dependence of the RBE varies between tumors of different histology. The results support the use of hypofractionated carbon ion treatments in radioresistant tumors.


Assuntos
Radioterapia com Íons Pesados , Neoplasias da Próstata , Animais , Carbono , Relação Dose-Resposta à Radiação , Humanos , Hipóxia , Íons , Masculino , Neoplasias da Próstata/radioterapia , Ratos , Eficiência Biológica Relativa
8.
Z Med Phys ; 31(2): 105-121, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33568337

RESUMO

Ion beams used for radiotherapy exhibit an increased relative biological effectiveness (RBE), which depends on several physical treatment parameters as well as on biological factors of the irradiated tissues. While the RBE is an experimentally well-defined quantity, translation to patients is complex and requires radiobiological studies, dedicated models to calculate the RBE in treatment planning as well as strategies for dose prescription. Preclinical in vivo studies and analysis of clinical outcome are important to validate and refine RBE-models. This review describes the concept of the experimental and clinical RBE and explains the fundamental dependencies of the RBE based on in vitro experiments. The available preclinical in vivo studies on normal tissue and tumor RBE for ions heavier than protons are reviewed in the context of the historical and present development of ion beam radiotherapy. In addition, the role of in vivo RBE-values in the development and benchmarking of RBE-models as well as the transition of these models to clinical application are described. Finally, limitations in the translation of experimental RBE-values into clinical application and the direction of future research are discussed.


Assuntos
Radioterapia com Íons Pesados , Neoplasias , Terapia com Prótons , Radioterapia (Especialidade) , Humanos , Neoplasias/radioterapia , Prótons , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa
9.
Radiat Res ; 194(5): 465-475, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045073

RESUMO

Carbon- (12C-) ion radiotherapy exhibits enhanced biological effectiveness compared to photon radiotherapy, however, the contribution of its interaction with the vasculature remains debatable. The effect of high-dose 12C-ion and photon irradiation on vascular permeability in moderately differentiated rat prostate tumors was compared using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Syngeneic R3327-HI rat prostate tumors were irradiated with a single dose of either 18 or 37 Gy 12C ions, or 37 or 75 Gy 6-MV photons (sub-curative and curative dose levels, respectively). DCE-MRI was performed one day prior to and 3, 7, 14 and 21 days postirradiation. Voxel-based tumor concentration-time curves were clustered based on their curve shape and treatment response was assessed as the longitudinal changes in the relative abundance per cluster. Radiation-induced vascular damage and increased permeability occurred at day 7 postirradiation for all treatment groups except for the 75 Gy photon-irradiated group, where the onset of vascular damage was delayed until day 14. No differences between irradiation modalities were found. Therefore, early vascular damage cannot explain the higher effectiveness of 12C ions relative to photons in terms of local tumor control for this moderately differentiated prostate tumor and the applied single high doses.


Assuntos
Adenocarcinoma/radioterapia , Permeabilidade Capilar/efeitos da radiação , Carbono/uso terapêutico , Radioterapia com Íons Pesados , Imageamento por Ressonância Magnética/métodos , Fótons/uso terapêutico , Neoplasias da Próstata/radioterapia , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Masculino , Transplante de Neoplasias , Análise de Componente Principal , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/diagnóstico por imagem , Distribuição Aleatória , Ratos , Transplante Heterotópico
10.
Radiat Oncol ; 15(1): 6, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900185

RESUMO

BACKGROUND: To determine the relative biological effectiveness (RBE) and α/ß-values after fractionated carbon ion irradiations of the rat spinal cord with varying linear energy transfer (LET) to benchmark RBE-model calculations. MATERIAL AND METHODS: The rat spinal cord was irradiated with 6 fractions of carbon ions at 6 positions within a 6 cm spread-out Bragg-peak (SOBP, LET: 16-99 keV/µm). TD50-values (dose at 50% complication probability) were determined from dose-response curves for the endpoint radiation induced myelopathy (paresis grade II) within 300 days after irradiation. Based on TD50-values of 15 MV photons, RBE-values were calculated and adding previously published data, the LET and fractional dose-dependence of the RBE was used to benchmark the local effect model (LEM I and IV). RESULTS: At six fractions, TD50-values decreased from 39.1 ± 0.4 Gy at 16 keV/µm to 17.5 ± 0.3 Gy at 99 keV/µm and the RBE increased accordingly from 1.46 ± 0.05 to 3.26 ± 0.13. Experimental α/ß-ratios ranged from 6.9 ± 1.1 Gy to 44.3 ± 7.2 Gy and increased strongly with LET. Including all available data, comparison with model-predictions revealed that (i) LEM IV agrees better in the SOBP, while LEM I fits better in the entrance region, (ii) LEM IV describes the slope of the RBE within the SOBP better than LEM I, and (iii) in contrast to the strong LET-dependence, the RBE-deviations depend only weakly on fractionation within the measured range. CONCLUSIONS: This study extends the available RBE data base to significantly lower fractional doses and performes detailed tests of the RBE-models LEM I and IV. In this comparison, LEM IV agrees better with the experimental data in the SOBP than LEM I. While this could support a model replacement in treatment planning, careful dosimetric analysis is required for the individual patient to evaluate potential clinical consequences.


Assuntos
Radioterapia com Íons Pesados , Medula Espinal/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Transferência Linear de Energia , Dosagem Radioterapêutica , Ratos , Ratos Sprague-Dawley , Eficiência Biológica Relativa
11.
Radiat Res ; 193(1): 34-45, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697210

RESUMO

We collected initial quantitative information on the effects of high-dose carbon (12C) ions compared to photons on vascular damage in anaplastic rat prostate tumors, with the goal of elucidating differences in response to high-LET radiation, using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Syngeneic R3327-AT1 rat prostate tumors received a single dose of either 16 or 37 Gy 12C ions or 37 or 85 Gy 6 MV photons (iso-absorbed and iso-effective doses, respectively). The animals underwent DCE-MRI prior to, and on days 3, 7, 14 and 21 postirradiation. The extended Tofts model was used for pharmacokinetic analysis. At day 21, tumors were dissected and histologically examined. The results of this work showed the following: 1. 12C ions led to stronger vascular changes compared to photons, independent of dose; 2. Tumor growth was comparable for all radiation doses and modalities until day 21; 3. Nonirradiated, rapidly growing control tumors showed a decrease in all pharmacokinetic parameters (area under the curve, Ktrans, ve, vp) over time; 4. 12C-ion-irradiated tumors showed an earlier increase in area under the curve and Ktrans than photon-irradiated tumors; 5. 12C-ion irradiation resulted in more homogeneous parameter maps and histology compared to photons; and 6. 12C-ion irradiation led to an increased microvascular density and decreased proliferation activity in a largely dose-independent manner compared to photons. Postirradiation changes related to 12C ions and photons were detected using DCE-MRI, and correlated with histological parameters in an anaplastic experimental prostate tumor. In summary, this pilot study demonstrated that exposure to 12C ions increased the perfusion and/or permeability faster and led to larger changes in DCE-MRI parameters resulting in increased vessel density and presumably less hypoxia at the end of the observation period when compared to photons. Within this study no differences were found between curative and sub-curative doses in either modality.


Assuntos
Circulação Sanguínea/efeitos da radiação , Permeabilidade Capilar/efeitos da radiação , Radioterapia com Íons Pesados , Imageamento por Ressonância Magnética , Fótons/uso terapêutico , Neoplasias da Próstata/radioterapia , Animais , Proliferação de Células/efeitos da radiação , Meios de Contraste , Relação Dose-Resposta à Radiação , Masculino , Microvasos/metabolismo , Microvasos/fisiopatologia , Microvasos/efeitos da radiação , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/fisiopatologia , Ratos , Hipóxia Tumoral/efeitos da radiação
12.
Radiother Oncol ; 133: 120-124, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30935567

RESUMO

OBJECTIVE: To quantify the impact of tumor-associated resistance factors on local tumor control after split doses of carbon (12C-) ions or photons in an experimental prostate tumor model. MATERIAL AND METHODS: Three sublines (AT1, H, HI) of syngeneic rat prostate tumors (R3327) differing in growth rate, differentiation and hypoxic status were irradiated with split doses of either 12C-ions or 6MV photons. Dose-response curves were determined for the endpoint local tumor control within 300 days. The relative biological effectiveness (RBE) of 12C-ions was calculated from the TCD50-values (dose at 50% control probability) of photons and 12C-ions. RESULTS: Experimental findings demonstrated: (i) The RBE was highest for the least differentiated AT1-tumor (2.39 ±â€¯0.16 (AT1) vs 2.06 ±â€¯0.11 (H) and 2.03 ±â€¯0.17 (HI)). (ii) TCD50-values between the three tumor sublines differed much less for 12C-ions (26.0-37.9 Gy) than for photons (53.7-90.6 Gy). (iii) While the slope of the dose-response curves for photons and 12C-ions were very similar for the AT1- and H-tumors, the histologically heterogeneous HI-tumor showed a shallow dose-response curve for photons, which is transformed into a steep dose-response curve after 12C-ion irradiation. CONCLUSION: The response to carbon ion irradiations is much less dependent on biological differences between and within the tumor-sublines. Tumors showing a high resistance against photon treatments, also exhibit the largest RBE for carbon ions. Carbon ions could therefore be of clinical advantage for the treatment of tumors with known resistance factors against photons.


Assuntos
Radioterapia com Íons Pesados/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Animais , Hipóxia Celular , Relação Dose-Resposta à Radiação , Masculino , Fótons/uso terapêutico , Neoplasias da Próstata/metabolismo , Ratos , Eficiência Biológica Relativa
13.
Phys Med Biol ; 64(4): 045003, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30625424

RESUMO

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to quantify perfusion and vascular permeability. In most cases a bolus arrival time (BAT) delay exists between the arterial input function (AIF) and the contrast agent arrival in the tissue of interest which needs to be estimated. Existing methods for BAT estimation are tailored to tissue concentration curves, which have a fast upslope to the peak as frequently observed in patient data. However, they may give poor results for curves that do not have this characteristic shape such as tissue concentration curves of small animals. In this paper, we propose a method for BAT estimation of signals that do not have a fast upslope to their peak. The model is based on splines which are able to adapt to a large variety of concentration curves. Furthermore, the method estimates BATs on a continuous time scale. All relevant model parameters are automatically determined by generalized cross validation. We use simulated concentration curves of small animal and patient settings to assess the accuracy and robustness of our approach. The proposed method outperforms a state-of-the-art method for small animal data and it gives competitive results for patient data. Finally, it is tested on in vivo acquired rat data where accuracy of BAT estimation was also improved upon the state-of-the-art method. The results indicate that the proposed method is suitable for accurate BAT estimation of DCE-MRI data, especially for small animals.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Modelos Estatísticos , Algoritmos , Animais , Masculino , Ratos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Fatores de Tempo
14.
J Biomed Opt ; 23(3): 1-11, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29560625

RESUMO

A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity.


Assuntos
Imagem Óptica/métodos , Oxigênio/análise , Técnicas Fotoacústicas/métodos , Neoplasias da Próstata/diagnóstico por imagem , Animais , Masculino , Neoplasias Experimentais , Oxigênio/metabolismo , Neoplasias da Próstata/metabolismo , Ratos
15.
Oncotarget ; 8(50): 87809-87820, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152122

RESUMO

Cisplatin-based chemo-radiotherapy is widely used to treat cancers with often severe therapy-associated late toxicities. While mesenchymal stem cells (MSCs) were shown to aid regeneration of cisplatin- or radiation-induced tissue lesions, the effect of the combined treatment on the stem cells remains unknown. Here we demonstrate that cisplatin treatment radiosensitized human bone marrow-derived MSCs in a dose-dependent manner and increased levels of radiation-induced apoptosis. However, the defining stem cell properties of MSCs remained largely intact after cisplatin-based chemo-radiation, and stem cell motility, adhesion, surface marker expression and the characteristic differentiation potential were not significantly influenced. The increased cisplatin-mediated radiosensitivity was associated with a cell cycle shift of MSCs towards the radiosensitive G2/M phase and increased residual DNA double-strand breaks. These data demonstrate for the first time a dose-dependent radiosensitization effect of MSCs by cisplatin. Clinically, the observed increase in radiation sensitivity and subsequent loss of regenerative MSCs may contribute to the often severe late toxicities observed after cisplatin-based chemo-radiotherapy in cancer patients.

16.
Radiat Oncol ; 12(1): 174, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121984

RESUMO

BACKGROUND: To summarize the research activities of the "clinical research group heavy ion therapy", funded by the German Research Foundation (DFG, KFO 214), on the impact of intrinsic tumor characteristics (grading, hypoxia) on local tumor control after carbon (12C-) ion- and photon irradiations. METHODS: Three sublines of syngeneic rat prostate tumors (R3327) with various differentiation levels (highly (-H), moderately (-HI) or anaplastic (-AT1), (diameter 10 mm) were irradiated with 1, 2 and 6 fractions of either 12C-ions or 6 MV photons using increasing dose levels. Primary endpoint was local tumor control at 300 days. The relative biological effectiveness (RBE) of 12C-ions was calculated from TCD50-values (dose at 50% tumor control probability) of photons and 12C-ions and correlated with intrinsic tumor parameters. For the HI-subline, larger tumors (diameter 18 mm) were irradiated with either carbon ions, oxygen ions or photons under ambient as well as hypoxic conditions to determine the variability of the RBE under different oxygenation levels. In addition, imaging, histology and molecular analyses were performed to decipher the underlying mechanisms. RESULTS: Experimental results revealed (i) a smaller variation of the TCD50-values between the three tumor sublines for 12C-ions (23.6 - 32.9 Gy) than for photons (38.2 - 75.7 Gy), (ii) steeper dose-response curves for 12C-ions, and (iii) an RBE that increased with tumor grading (1.62 ± 0.11 (H) vs 2.08 ± 0.13 (HI) vs 2.30 ± 0.08 (AT1)). Large HI-tumors resulted in a marked increase of TCD50, which was increased further by 15% under hypoxic relative to oxic conditions. Noninvasive imaging, histology and molecular analyses identified hypoxia as an important radioresistance factor in photon therapy. CONCLUSIONS: The dose-response studies revealed a higher efficacy of 12C-ions relative to photon therapy in the investigated syngeneic tumor model. Hypoxia turned out to be at least one important radioresistance factor, which can be partly overridden by high-LET ion beams. This might be used to increase treatment effectiveness also in patients. The results of this project served as a starting point for several ongoing research projects.


Assuntos
Adenocarcinoma/radioterapia , Radioterapia com Íons Pesados , Fótons/uso terapêutico , Próstata/efeitos da radiação , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Animais , Carbono , Ciclo Celular , Diferenciação Celular , Relação Dose-Resposta à Radiação , Citometria de Fluxo , Hipóxia , Íons , Imageamento por Ressonância Magnética , Masculino , Neoplasias Experimentais/radioterapia , Oxigênio , Tomografia por Emissão de Pósitrons , Ratos , Eficiência Biológica Relativa , Ultrassonografia Doppler
18.
Cancer Lett ; 378(2): 97-103, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27224892

RESUMO

OBJECTIVE: To quantitatively study the impact of intrinsic tumor characteristics and microenvironmental factors on local tumor control after irradiation with carbon ((12)C-) ions and photons in an experimental prostate tumor model. MATERIAL AND METHODS: Three sublines of a syngeneic rat prostate tumor (R3327) differing in grading (highly (-H) moderately (-HI) or anaplastic (-AT1)) were irradiated with increasing single doses of either (12)C-ions or 6 MV photons in Copenhagen rats. Primary endpoint was local tumor control within 300 days. The relative biological effectiveness (RBE) of (12)C-ions was calculated from the dose at 50% tumor control probability (TCD50) of photons and (12)C-ions and was correlated with histological, physiological and genetic tumor parameters. RESULTS: Experimental findings demonstrated that (i) TCD50-values between the three tumor sublines differed less for (12)C-ions (23.6-32.9 Gy) than for photons (38.2-75.7 Gy), (ii) the slope of the dose-response curve for each tumor line was steeper for (12)C-ions than for photons, and (iii) the RBE increased with tumor grading from 1.62 ± 0.11 (H) to 2.08 ± 0.13 (HI) to 2.30 ± 0.08 (AT1). CONCLUSION: The response to (12)C-ions is less dependent on resistance factors as well as on heterogeneity between and within tumor sublines as compared to photons. A clear correlation between decreasing differentiation status and increasing RBE was found. (12)C-ions may therefore be a therapeutic option especially in patients with undifferentiated prostate tumors, expressing high resistance against photons.


Assuntos
Adenocarcinoma/radioterapia , Radioterapia com Íons Pesados , Neoplasias Experimentais/radioterapia , Neoplasias Pancreáticas/radioterapia , Fótons , Doses de Radiação , Tolerância a Radiação , Adenocarcinoma/patologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Masculino , Transplante de Neoplasias , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/patologia , Ratos , Microambiente Tumoral
19.
Am J Nucl Med Mol Imaging ; 5(4): 348-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26269773

RESUMO

Hypoxia is an important resistance factor in radiotherapy and measuring its spatial distribution in tumors non-invasively is therefore of major importance. This study characterizes the hypoxic conditions of three tumor sublines (AT1, HI and H) of the Dunning R3327 prostate tumor model, which differ in histology, differentiation degree, volume doubling time and androgenic sensitivity, using dynamic Fluoromisonidazole ((18)F-FMISO)-Positron Emission Tomography/Computed Tomography (PET-CT) and histology. Measurements were performed for two tumor volumes (average 0.8±0.5 cm(3) vs 4.4±2.8 cm(3)). Data were analyzed according to tumor subline as well as to the shape of the time activity curves (TACs), based on standardized uptake values (SUVs) and a two-tissue compartment model. Quantitative immunohistochemical studies of the hypoxic fraction, vessel density and vessel size were performed using pimonidazole, Hoechst 33342 and CD31 dyes. No significant FMISO uptake was found in small tumors, which had a mean SUV of 0.64±0.36, 0.55±0.10 and 0.45±0.08, for AT1, HI and H sublines respectively. In large tumors, the SUVs were 1.33±0.52, 1.12±0.83 and 0.63±0.16 for AT1, HI and H sublines and the corresponding hypoxic fractions obtained with pimonidazole staining were 0.62±0.23, 0.54±0.24 and 0.07±0.10, respectively. The AT1- was the most and H-tumor was the least hypoxic for both methods (P<0.05). All measurements were able to discriminate different hypoxic conditions, however despite SUV and kinetic parameters correlated with the three identified TAC shapes, most of the histological results did not. These results demonstrate impact and limitations of static and dynamic PET-CT measurements to assess hypoxia non-invasively.

20.
Radiother Oncol ; 117(2): 358-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26197953

RESUMO

PURPOSE: To measure the relative biological effectiveness (RBE) of carbon ions relative to 15 MeV photons in the rat spinal cord for different linear energy transfers (LET) to validate model calculations. METHODS AND MATERIALS: The cervical spinal cord of rats was irradiated with 2 fractions of carbon ions at six positions of a 6 cm spread-out Bragg-peak (SOBP, 16-99 keV/µm). TD50-values (dose at 50% complication probability) were determined from dose-response curves for the endpoint radiation induced myelopathy (paresis grade II) within 300 days after irradiation. Using previously published TD50-values for photons (Karger et al., 2006; Debus et al., 2003), RBE-values were determined and compared with predictions of two versions of the local effect model (LEM I and IV). RESULTS: TD50-values for paresis grade II were 26.7 ± 0.4 Gy (16 keV/µm), 24.0 ± 0.3 Gy (21 keV/µm), 22.5 ± 0.3 Gy (36 keV/µm), 20.1 ± 1.2 Gy (45 keV/µm), 17.7 ± 0.3 Gy (66 keV/µm), and 14.9 ± 0.3 Gy (99 keV/µm). RBE-values increased from 1.28 ± 0.03 (16 keV/µm) up to 2.30 ± 0.06 at 99 keV/µm. At the applied high fractional doses, LEM I fits best at 16 keV/µm and deviates progressively toward higher LETs while LEM IV agrees best at 99 keV/µm and shows increasing deviations, especially below 66 keV/µm. CONCLUSIONS: The measured data improve the knowledge on the accuracy of RBE-calculations for carbon ions.


Assuntos
Relação Dose-Resposta à Radiação , Radioterapia com Íons Pesados/métodos , Medula Espinal/efeitos da radiação , Animais , Feminino , Transferência Linear de Energia , Dosagem Radioterapêutica , Ratos , Ratos Sprague-Dawley , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...