Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16665, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794083

RESUMO

We describe a two-step approach for combining interactive molecular dynamics in virtual reality (iMD-VR) with free energy (FE) calculation to explore the dynamics of biological processes at the molecular level. We refer to this combined approach as iMD-VR-FE. Stage one involves using a state-of-the-art 'human-in-the-loop' iMD-VR framework to generate a diverse range of protein-ligand unbinding pathways, benefitting from the sophistication of human spatial and chemical intuition. Stage two involves using the iMD-VR-sampled pathways as initial guesses for defining a path-based reaction coordinate from which we can obtain a corresponding free energy profile using FE methods. To investigate the performance of the method, we apply iMD-VR-FE to investigate the unbinding of a benzamidine ligand from a trypsin protein. The binding free energy calculated using iMD-VR-FE is similar for each pathway, indicating internal consistency. Moreover, the resulting free energy profiles can distinguish energetic differences between pathways corresponding to various protein-ligand conformations (e.g., helping to identify pathways that are more favourable) and enable identification of metastable states along the pathways. The two-step iMD-VR-FE approach offers an intuitive way for researchers to test hypotheses for candidate pathways in biomolecular systems, quickly obtaining both qualitative and quantitative insight.


Assuntos
Proteínas , Realidade Virtual , Humanos , Ligação Proteica , Ligantes , Simulação de Dinâmica Molecular
2.
J Mol Graph Model ; 125: 108606, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37660615

RESUMO

Interactive molecular dynamics simulation in virtual reality (iMD-VR) is emerging as a promising technique in molecular science. Here, we demonstrate its use in a range of fifteen applications in materials science and heterogeneous catalysis. In this work, the iMD-VR package Narupa is used with the MD package, DL_POLY [1]. We show how iMD-VR can be used to: (i) investigate the mechanism of lithium fast ion conduction by directing the formation of defects showing that vacancy transport is favoured over interstitialcy mechanisms, and (ii) guide a molecule through a zeolite pore to explore diffusion within zeolites, examining in detail the motion of methyl n-hexanoate in H-ZSM-5 zeolite and identifying bottlenecks restricting diffusion. iMD-VR allows users to manipulate these systems intuitively, to drive changes in them and observe the resulting changes in structure and dynamics. We make these simulations available, as a resource for both teaching and research. All simulation files, with videos, can be found online (https://doi.org/10.5281/zenodo.8252314) and are provided as open-source material.


Assuntos
Simulação de Dinâmica Molecular , Realidade Virtual , Catálise , Difusão , Ésteres , Lítio
3.
Sci Rep ; 12(1): 8995, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637199

RESUMO

With a growing body of research highlighting the therapeutic potential of experiential phenomenology which diminishes egoic identity and increases one's sense of connectedness, there is significant interest in how to elicit such 'self-transcendent experiences' (STEs) in laboratory contexts. Psychedelic drugs (YDs) have proven particularly effective in this respect, producing subjective phenomenology which reliably elicits intense STEs. With virtual reality (VR) emerging as a powerful tool for constructing new perceptual environments, we describe a VR framework called 'Isness-distributed' (Isness-D) which harnesses the unique affordances of distributed multi-person VR to blur conventional self-other boundaries. Within Isness-D, groups of participants co-habit a shared virtual space, collectively experiencing their bodies as luminous energetic essences with diffuse spatial boundaries. It enables moments of 'energetic coalescence', a new class of embodied intersubjective experience where bodies can fluidly merge, enabling participants to include multiple others within their self-representation. To evaluate Isness-D, we adopted a citizen science approach, coordinating an international network of Isness-D 'nodes'. We analyzed the results (N = 58) using 4 different self-report scales previously applied to analyze subjective YD phenomenology (the inclusion of community in self scale, ego-dissolution inventory, communitas scale, and the MEQ30 mystical experience questionnaire). Despite the complexities associated with a distributed experiment like this, the Isness-D scores on all 4 scales were statistically indistinguishable from recently published YD studies, demonstrating that distributed VR can be used to design intersubjective STEs where people dissolve their sense of self in the connection to others.


Assuntos
Alucinógenos , Realidade Virtual , Ego , Humanos , Inquéritos e Questionários
4.
Expert Opin Drug Discov ; 17(7): 685-698, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638298

RESUMO

INTRODUCTION: The potential of virtual reality (VR) to contribute to drug design and development has been recognized for many years. A recent advance is to use VR not only to visualize and interact with molecules, but also to interact with molecular dynamics simulations 'on the fly' (interactive molecular dynamics in VR, IMD-VR), which is useful for flexible docking and examining binding processes and conformational changes. AREAS COVERED: The authors use the term 'interactive VR' to refer to software where interactivity is an inherent part of the user VR experience e.g. in making structural modifications or interacting with a physically rigorous molecular dynamics (MD) simulation, as opposed to using VR controllers to rotate and translate the molecule for enhanced visualization. Here, they describe these methods and their application to problems relevant to drug discovery, highlighting the possibilities that they offer in this arena. EXPERT OPINION: The ease of viewing and manipulating molecular structures and dynamics, using accessible VR hardware, and the ability to modify structures on the fly (e.g. adding or deleting atoms) - and for groups of researchers to work together in the same virtual environment - makes modern interactive VR a valuable tool to add to the armory of drug design and development methods.


Assuntos
Realidade Virtual , Desenho de Fármacos , Descoberta de Drogas , Simulação de Dinâmica Molecular , Software
5.
ACS Earth Space Chem ; 6(1): 207-217, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087992

RESUMO

Characterizing the photochemical reactivity of transient volatile organic compounds (VOCs) in our atmosphere begins with a proper understanding of their abilities to absorb sunlight. Unfortunately, the photoabsorption cross-sections for a large number of transient VOCs remain unavailable experimentally due to their short lifetime or high reactivity. While structure-activity relationships (SARs) have been successfully employed to estimate the unknown photoabsorption cross-sections of VOCs, computational photochemistry offers another promising strategy to predict not only the vertical electronic transitions of a given molecule but also the width and shape of the bands forming its absorption spectrum. In this work, we focus on the use of the nuclear ensemble approach (NEA) to determine the photoabsorption cross-section of four exemplary VOCs, namely, acrolein, methylhydroperoxide, 2-hydroperoxy-propanal, and (microsolvated) pyruvic acid. More specifically, we analyze the influence that different strategies for sampling the ground-state nuclear density-Wigner sampling and ab initio molecular dynamics with a quantum thermostat-can have on the simulated absorption spectra. We highlight the potential shortcomings of using uncoupled harmonic modes within Wigner sampling of nuclear density to describe flexible or microsolvated VOCs and some limitations of SARs for multichromophoric VOCs. Our results suggest that the NEA could constitute a powerful tool for the atmospheric community to predict the photoabsorption cross-section for transient VOCs.

6.
Chem Sci ; 12(41): 13686-13703, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34760153

RESUMO

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

7.
J Chem Phys ; 155(15): 154106, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686059

RESUMO

The emerging fields of citizen science and gamification reformulate scientific problems as games or puzzles to be solved. Through engaging the wider non-scientific community, significant breakthroughs may be made by analyzing citizen-gathered data. In parallel, recent advances in virtual reality (VR) technology are increasingly being used within a scientific context and the burgeoning field of interactive molecular dynamics in VR (iMD-VR) allows users to interact with dynamical chemistry simulations in real time. Here, we demonstrate the utility of iMD-VR as a medium for gamification of chemistry research tasks. An iMD-VR "game" was designed to encourage users to explore the reactivity of a particular chemical system, and a cohort of 18 participants was recruited to playtest this game as part of a user study. The reaction game encouraged users to experiment with making chemical reactions between a propyne molecule and an OH radical, and "molecular snapshots" from each game session were then compiled and used to map out reaction pathways. The reaction network generated by users was compared to existing literature networks demonstrating that users in VR capture almost all the important reaction pathways. Further comparisons between humans and an algorithmic method for guiding molecular dynamics show that through using citizen science to explore these kinds of chemical problems, new approaches and strategies start to emerge.


Assuntos
Ciência do Cidadão , Gamificação , Simulação de Dinâmica Molecular , Realidade Virtual , Algoritmos , Humanos
8.
J Comput Chem ; 42(28): 2036-2048, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34387374

RESUMO

AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem. 2018, 39, 1922). This release features a number of new capabilities: rare-event molecular dynamics simulations to enhance reaction discovery, extension of the original search algorithm to study van der Waals complexes, use of chemical knowledge, a new search algorithm based on bond-order time series analysis, statistics of the chemical reaction networks, a web application to submit jobs, and other features. The source code, manual, installation instructions and the website link are available at: https://rxnkin.usc.es/index.php/AutoMeKin.

9.
J Chem Theory Comput ; 17(8): 4901-4912, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34283599

RESUMO

In many scientific fields, there is an interest in understanding the way in which chemical networks evolve. The chemical networks which researchers focus upon have become increasingly complex, and this has motivated the development of automated methods for exploring chemical reactivity or conformational change in a "black-box" manner, harnessing modern computing resources to automate mechanism discovery. In this work, we present a new approach to automated mechanism generation which couples molecular dynamics and statistical rate theory to automatically find kinetically important reactions and then solve the time evolution of the species in the evolving network. The key to this chemical network mapping through combined dynamics and ME simulation approach is the concept of "kinetic convergence", whereby the search for new reactions is constrained to those species which are kinetically favorable at the conditions of interest. We demonstrate the capability of the new approach for two systems, a well-studied combustion system and a multiple oxygen addition system relevant to atmospheric aerosol formation.

10.
PLoS One ; 16(7): e0253612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283864

RESUMO

The rise of machine learning (ML) has created an explosion in the potential strategies for using data to make scientific predictions. For physical scientists wishing to apply ML strategies to a particular domain, it can be difficult to assess in advance what strategy to adopt within a vast space of possibilities. Here we outline the results of an online community-powered effort to swarm search the space of ML strategies and develop algorithms for predicting atomic-pairwise nuclear magnetic resonance (NMR) properties in molecules. Using an open-source dataset, we worked with Kaggle to design and host a 3-month competition which received 47,800 ML model predictions from 2,700 teams in 84 countries. Within 3 weeks, the Kaggle community produced models with comparable accuracy to our best previously published 'in-house' efforts. A meta-ensemble model constructed as a linear combination of the top predictions has a prediction accuracy which exceeds that of any individual model, 7-19x better than our previous state-of-the-art. The results highlight the potential of transformer architectures for predicting quantum mechanical (QM) molecular properties.


Assuntos
Ciência do Cidadão/métodos , Ciência do Cidadão/tendências , Previsões/métodos , Algoritmos , Participação da Comunidade , Humanos , Aprendizado de Máquina/tendências , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Estatísticos
11.
J Phys Chem A ; 125(16): 3473-3488, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33880919

RESUMO

We propose and test an extension of the energy-grained master equation (EGME) for treating nonadiabatic (NA) hopping between different potential energy surfaces, which enables us to model the competition between stepwise collisional relaxation and kinetic processes which transfer population between different electronic states of the same spin symmetry. By incorporating Zhu-Nakamura theory into the EGME, we are able to treat NA passages beyond the simple Landau-Zener approximation, along with the corresponding treatments of zero-point energy and tunneling probability. To evaluate the performance of this NA-EGME approach, we carried out detailed studies of the UV photodynamics of the volatile organic compound C6-hydroperoxy aldehyde (C6-HPALD) using on-the-fly ab initio molecular dynamics and trajectory surface hopping. For this multichromophore molecule, we show that the EGME is able to capture important aspects of the dynamics, including kinetic timescales, and diabatic trapping. Such an approach provides a promising and efficient strategy for treating the long-time dynamics of photoexcited molecules in regimes which are difficult to capture using atomistic on-the-fly molecular dynamics.

12.
J Chem Inf Model ; 60(12): 5803-5814, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33174415

RESUMO

The main protease (Mpro) of the SARS-CoV-2 virus is one focus of drug development efforts for COVID-19. Here, we show that interactive molecular dynamics in virtual reality (iMD-VR) is a useful and effective tool for creating Mpro complexes. We make these tools and models freely available. iMD-VR provides an immersive environment in which users can interact with MD simulations and so build protein complexes in a physically rigorous and flexible way. Recently, we have demonstrated that iMD-VR is an effective method for interactive, flexible docking of small molecule drugs into their protein targets (Deeks et al. PLoS One 2020, 15, e0228461). Here, we apply this approach to both an Mpro inhibitor and an oligopeptide substrate, using experimentally determined crystal structures. For the oligopeptide, we test against a crystallographic structure of the original SARS Mpro. Docking with iMD-VR gives models in agreement with experimentally observed (crystal) structures. The docked structures are also tested in MD simulations and found to be stable. Different protocols for iMD-VR docking are explored, e.g., with and without restraints on protein backbone, and we provide recommendations for its use. We find that it is important for the user to focus on forming binding interactions, such as hydrogen bonds, and not to rely on using simple metrics (such as RMSD), in order to create realistic, stable complexes. We also test the use of apo (uncomplexed) crystal structures for docking and find that they can give good results. This is because of the flexibility and dynamic response allowed by the physically rigorous, atomically detailed simulation approach of iMD-VR. We make our models (and interactive simulations) freely available. The software framework that we use, Narupa, is open source, and uses commodity VR hardware, so these tools are readily accessible to the wider research community working on Mpro (and other COVID-19 targets). These should be widely useful in drug development, in education applications, e.g., on viral enzyme structure and function, and in scientific communication more generally.


Assuntos
Antivirais/química , Benzenoacetamidas/química , COVID-19/metabolismo , Proteases 3C de Coronavírus/metabolismo , Imidazóis/química , SARS-CoV-2/enzimologia , Inibidores de Protease Viral/química , Antivirais/farmacocinética , Antivirais/farmacologia , Benzenoacetamidas/farmacocinética , Benzenoacetamidas/farmacologia , Proteases 3C de Coronavírus/genética , Cristalização , Cicloexilaminas , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Imidazóis/farmacocinética , Imidazóis/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Conformação Proteica , Piridinas , Relação Estrutura-Atividade , Inibidores de Protease Viral/farmacocinética , Inibidores de Protease Viral/farmacologia
13.
J Chem Phys ; 153(15): 154105, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092381

RESUMO

The ability to understand and engineer molecular structures relies on having accurate descriptions of the energy as a function of atomic coordinates. Here, we outline a new paradigm for deriving energy functions of hyperdimensional molecular systems, which involves generating data for low-dimensional systems in virtual reality (VR) to then efficiently train atomic neural networks (ANNs). This generates high-quality data for specific areas of interest within the hyperdimensional space that characterizes a molecule's potential energy surface (PES). We demonstrate the utility of this approach by gathering data within VR to train ANNs on chemical reactions involving fewer than eight heavy atoms. This strategy enables us to predict the energies of much higher-dimensional systems, e.g., containing nearly 100 atoms. Training on datasets containing only 15k geometries, this approach generates mean absolute errors around 2 kcal mol-1. This represents one of the first times that an ANN-PES for a large reactive radical has been generated using such a small dataset. Our results suggest that VR enables the intelligent curation of high-quality data, which accelerates the learning process.

14.
PLoS One ; 15(3): e0228461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160194

RESUMO

Simulating drug binding and unbinding is a challenge, as the rugged energy landscapes that separate bound and unbound states require extensive sampling that consumes significant computational resources. Here, we describe the use of interactive molecular dynamics in virtual reality (iMD-VR) as an accurate low-cost strategy for flexible protein-ligand docking. We outline an experimental protocol which enables expert iMD-VR users to guide ligands into and out of the binding pockets of trypsin, neuraminidase, and HIV-1 protease, and recreate their respective crystallographic protein-ligand binding poses within 5-10 minutes. Following a brief training phase, our studies shown that iMD-VR novices were able to generate unbinding and rebinding pathways on similar timescales as iMD-VR experts, with the majority able to recover binding poses within 2.15 Å RMSD of the crystallographic binding pose. These results indicate that iMD-VR affords sufficient control for users to carry out the detailed atomic manipulations required to dock flexible ligands into dynamic enzyme active sites and recover crystallographic poses, offering an interesting new approach for simulating drug docking and generating binding hypotheses.


Assuntos
Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Neuraminidase/metabolismo , Tripsina/metabolismo , Realidade Virtual , Benzamidinas/metabolismo , Sítios de Ligação , Carbamatos/metabolismo , Furanos , Ligantes , Oseltamivir/metabolismo , Ligação Proteica , Sulfonamidas/metabolismo , Zanamivir/metabolismo
15.
Chem Sci ; 11(2): 508-515, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32190270

RESUMO

The IMPRESSION (Intelligent Machine PREdiction of Shift and Scalar information Of Nuclei) machine learning system provides an efficient and accurate method for the prediction of NMR parameters from 3-dimensional molecular structures. Here we demonstrate that machine learning predictions of NMR parameters, trained on quantum chemical computed values, can be as accurate as, but computationally much more efficient (tens of milliseconds per molecular structure) than, quantum chemical calculations (hours/days per molecular structure) starting from the same 3-dimensional structure. Training the machine learning system on quantum chemical predictions, rather than experimental data, circumvents the need for the existence of large, structurally diverse, error-free experimental databases and makes IMPRESSION applicable to solving 3-dimensional problems such as molecular conformation and stereoisomerism.

16.
Chem Sci ; 11(11): 2999-3006, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-34122802

RESUMO

The diffusion of small molecules through viscous matrices formed by large organic molecules is important across a range of domains, including pharmaceutical science, materials chemistry, and atmospheric science, impacting on, for example, the formation of amorphous and crystalline phases. Here we report significant breakdowns in the Stokes-Einstein (SE) equation from measurements of the diffusion of water (spanning 5 decades) and viscosity (spanning 12 decades) in saccharide aerosol droplets. Molecular dynamics simulations show water diffusion is not continuous, but proceeds by discrete hops between transient cavities that arise and dissipate as a result of dynamical fluctuations within the saccharide lattice. The ratio of transient cavity volume to solvent volume increases with size of molecules making up the lattice, increasing divergence from SE predictions. This improved mechanistic understanding of diffusion in viscous matrices explains, for example, why organic compounds equilibrate according to SE predictions and water equilibrates more rapidly in aerosols.

17.
J Chem Phys ; 150(22): 220901, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31202243

RESUMO

As molecular scientists have made progress in their ability to engineer nanoscale molecular structure, we face new challenges in our ability to engineer molecular dynamics (MD) and flexibility. Dynamics at the molecular scale differs from the familiar mechanics of everyday objects because it involves a complicated, highly correlated, and three-dimensional many-body dynamical choreography which is often nonintuitive even for highly trained researchers. We recently described how interactive molecular dynamics in virtual reality (iMD-VR) can help to meet this challenge, enabling researchers to manipulate real-time MD simulations of flexible structures in 3D. In this article, we outline various efforts to extend immersive technologies to the molecular sciences, and we introduce "Narupa," a flexible, open-source, multiperson iMD-VR software framework which enables groups of researchers to simultaneously cohabit real-time simulation environments to interactively visualize and manipulate the dynamics of molecular structures with atomic-level precision. We outline several application domains where iMD-VR is facilitating research, communication, and creative approaches within the molecular sciences, including training machines to learn potential energy functions, biomolecular conformational sampling, protein-ligand binding, reaction discovery using "on-the-fly" quantum chemistry, and transport dynamics in materials. We touch on iMD-VR's various cognitive and perceptual affordances and outline how these provide research insight for molecular systems. By synergistically combining human spatial reasoning and design insight with computational automation, technologies such as iMD-VR have the potential to improve our ability to understand, engineer, and communicate microscopic dynamical behavior, offering the potential to usher in a new paradigm for engineering molecules and nano-architectures.


Assuntos
Simulação de Dinâmica Molecular , Software , Realidade Virtual , Benzamidinas/metabolismo , Ciclofilina A/química , Humanos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Relações Interpessoais , Ligantes , Redes Neurais de Computação , Neuraminidase/metabolismo , Compostos Orgânicos/química , Oseltamivir/metabolismo , Ligação Proteica , Conformação Proteica , Teoria Quântica , Tripsina/metabolismo
18.
Nat Nanotechnol ; 14(5): 403, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31065070
19.
J Phys Chem A ; 123(20): 4486-4499, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30892040

RESUMO

While the primary bottleneck to a number of computational workflows was not so long ago limited by processing power, the rise of machine learning technologies has resulted in an interesting paradigm shift, which places increasing value on issues related to data curation-that is, data size, quality, bias, format, and coverage. Increasingly, data-related issues are equally as important as the algorithmic methods used to process and learn from the data. Here we introduce an open-source graphics processing unit-accelerated neural network (NN) framework for learning reactive potential energy surfaces (PESs). To obtain training data for this NN framework, we investigate the use of real-time interactive ab initio molecular dynamics in virtual reality (iMD-VR) as a new data curation strategy that enables human users to rapidly sample geometries along reaction pathways. Focusing on hydrogen abstraction reactions of CN radical with isopentane, we compare the performance of NNs trained using iMD-VR data versus NNs trained using a more traditional method, namely, molecular dynamics (MD) constrained to sample a predefined grid of points along the hydrogen abstraction reaction coordinate. Both the NN trained using iMD-VR data and the NN trained using the constrained MD data reproduce important qualitative features of the reactive PESs, such as a low and early barrier to abstraction. Quantitative analysis shows that NN learning is sensitive to the data set used for training. Our results show that user-sampled structures obtained with the quantum chemical iMD-VR machinery enable excellent sampling in the vicinity of the minimum energy path (MEP). As a result, the NN trained on the iMD-VR data does very well predicting energies that are close to the MEP but less well predicting energies for "off-path" structures. The NN trained on the constrained MD data does better predicting high-energy off-path structures, given that it included a number of such structures in its training set.

20.
Chem Sci ; 10(43): 9954-9968, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32055352

RESUMO

Most chemical transformations (reactions or conformational changes) that are of interest to researchers have many degrees of freedom, usually too many to visualize without reducing the dimensionality of the system to include only the most important atomic motions. In this article, we describe a method of using Principal Component Analysis (PCA) for analyzing a series of molecular geometries (e.g., a reaction pathway or molecular dynamics trajectory) and determining the reduced dimensional space that captures the most structural variance in the fewest dimensions. The software written to carry out this method is called PathReducer, which permits (1) visualizing the geometries in a reduced dimensional space, (2) determining the axes that make up the reduced dimensional space, and (3) projecting the series of geometries into the low-dimensional space for visualization. We investigated two options to represent molecular structures within PathReducer: aligned Cartesian coordinates and matrices of interatomic distances. We found that interatomic distance matrices better captured non-linear motions in a smaller number of dimensions. To demonstrate the utility of PathReducer, we have carried out a number of applications where we have projected molecular dynamics trajectories into a reduced dimensional space defined by an intrinsic reaction coordinate. The visualizations provided by this analysis show that dynamic paths can differ greatly from the minimum energy pathway on a potential energy surface. Viewing intrinsic reaction coordinates and trajectories in this way provides a quick way to gather qualitative information about the pathways trajectories take relative to a minimum energy path. Given that the outputs from PCA are linear combinations of the input molecular structure coordinates (i.e., Cartesian coordinates or interatomic distances), they can be easily transferred to other types of calculations that require the definition of a reduced dimensional space (e.g., biased molecular dynamics simulations).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...