Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 10: 893045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733812

RESUMO

Background: Although children with COVID-19 account for fewer hospitalizations than adults, many develop severe disease requiring intensive care treatment. Critical illness due to COVID-19 has been associated with lymphopenia and functional immune suppression. Myeloid-derived suppressor cells (MDSCs) potently suppress T cells and are significantly increased in adults with severe COVID-19. The role of MDSCs in the immune response of children with COVID-19 is unknown. Aims: We hypothesized that children with severe COVID-19 will have expansion of MDSC populations compared to those with milder disease, and that higher proportions of MDSCs will correlate with clinical outcomes. Methods: We conducted a prospective, observational study on a convenience sample of children hospitalized with PCR-confirmed COVID-19 and pre-pandemic, uninfected healthy controls (HC). Blood samples were obtained within 48 h of admission and analyzed for MDSCs, T cells, and natural killer (NK) cells by flow cytometry. Demographic information and clinical outcomes were obtained from the electronic medical record and a dedicated survey built for this study. Results: Fifty children admitted to the hospital were enrolled; 28 diagnosed with symptomatic COVID-19 (10 requiring ICU admission) and 22 detected by universal screening (6 requiring ICU admission). We found that children with severe COVID-19 had a significantly higher percentage of MDSCs than those admitted to the ward and uninfected healthy controls. Increased percentages of MDSCs in peripheral blood mononuclear cells (PBMC) were associated with CD4+ T cell lymphopenia. MDSC expansion was associated with longer hospitalizations and need for respiratory support in children admitted with acute COVID-19. Conclusion: These findings suggest that MDSCs are part of the dysregulated immune responses observed in children with severe COVID-19 and may play a role in disease pathogenesis. Future mechanistic studies are required to further understand the function of MDSCs in the setting of SARS-CoV-2 infection in children.

3.
J Infect Dis ; 225(2): 208-213, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34618885

RESUMO

The burden of coronavirus disease 2019 (COVID-19) in children represents a fraction of cases worldwide, yet a subset of those infected are at risk for severe disease. We measured plasma severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in a cohort of 103 children hospitalized with COVID-19 with diverse clinical manifestations. SARS-CoV-2 RNAemia was detected in 27 (26%) of these children, lasted for a median of 6 (interquartile range, 2-9) days, and was associated with higher rates of oxygen administration, admission to the intensive care unit, and longer hospitalization.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Adolescente , COVID-19/epidemiologia , Criança , Pré-Escolar , Feminino , Hospitalização , Humanos , Lactente , Unidades de Terapia Intensiva , Masculino , Nasofaringe/virologia , RNA Viral/genética , SARS-CoV-2/genética , Índice de Gravidade de Doença , Viremia/epidemiologia
4.
Curr Opin Virol ; 51: 216-223, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34781106

RESUMO

Respiratory syncytial virus (RSV) infections result in significant morbidity and mortality for young children worldwide. The development of preventive strategies for RSV has faced different challenges, including the legacy of the first vaccine attempt, and an incomplete understanding of the host immune response to the virus. However, promising preventive strategies against RSV are in the pipeline and their development has advanced rapidly in the past decade due in part to our improved knowledge about the structural conformation of key RSV proteins. These strategies include monoclonal antibodies and different vaccines platforms directed towards the main target populations.


Assuntos
Anticorpos Monoclonais/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Criança , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/mortalidade , Infecções por Vírus Respiratório Sincicial/terapia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
5.
Curr Opin Infect Dis ; 34(5): 552-558, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232136

RESUMO

PURPOSE OF REVIEW: Analyses of the host transcriptional response to infection has proved to be an alternative diagnostic strategy to standard direct pathogen detection. This review summarizes the value of applying blood and mucosal transcriptome analyses for the diagnosis and management of children with viral and bacterial infections. RECENT FINDINGS: Over the years, studies have validated the concept that RNA transcriptional profiles derived from children with infectious diseases carry a pathogen-specific biosignature that can be qualitatively and quantitively measured. These biosignatures can be translated into a biologically meaningful context to improve patient diagnosis, as seen in children with tuberculosis, rhinovirus infections, febrile infants and children with pneumonia; understand disease pathogenesis (i.e. congenital CMV) and objectively classify patients according to clinical severity (i.e. respiratory syncytial virus). SUMMARY: The global assessment of host RNA transcriptional immune responses has improved our understanding of the host-pathogen interactions in the clinical setting. It has shown the potential to be used in clinical situations wherein our current diagnostic tools are inadequate, guiding the diagnosis and classification of children with infectious diseases.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Bacterianas/diagnóstico , Biomarcadores , Criança , Doenças Transmissíveis/diagnóstico , Perfilação da Expressão Gênica , Humanos , Lactente
6.
J Gen Virol ; 100(1): 46-62, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30451651

RESUMO

Interferon (IFN) regulatory factors (IRFs) are important determinants of the innate response to infection. We evaluated the role(s) of combined and individual IRF deficiencies in the outcome of infection of C57BL/6 mice with Sindbis virus, an alphavirus that infects neurons and causes encephalomyelitis. The brain and spinal cord levels of Irf7, but not Irf3 mRNAs, were increased after infection. IRF3/5/7-/- and IRF3/7-/- mice died within 3-4 days with uncontrolled virus replication, similar to IFNα receptor-deficient mice, while all wild-type (WT) mice recovered. IRF3-/- and IRF7-/- mice had brain levels of IFNα that were lower, but brain and spinal cord levels of IFNß and IFN-stimulated gene mRNAs that were similar to or higher than WT mice without detectable serum IFN or increases in Ifna or Ifnb mRNAs in the lymph nodes, indicating that the differences in outcome were not due to deficiencies in the central nervous system (CNS) type I IFN response. IRF3-/- mice developed persistent neurological deficits and had more spinal cord inflammation and higher CNS levels of Il1b and Ifnγ mRNAs than WT mice, but all mice survived. IRF7-/- mice died 5-8 days after infection with rapidly progressive paralysis and differed from both WT and IRF3-/- mice in the induction of higher CNS levels of IFNß, tumour necrosis factor (TNF) α and Cxcl13 mRNA, delayed virus clearance and more extensive cell death. Therefore, fatal disease in IRF7-/- mice is likely due to immune-mediated neurotoxicity associated with failure to regulate the production of inflammatory cytokines such as TNFα in the CNS.


Assuntos
Infecções por Alphavirus/fisiopatologia , Encefalomielite/fisiopatologia , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Sindbis virus/crescimento & desenvolvimento , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Fator Regulador 3 de Interferon/deficiência , Fator Regulador 7 de Interferon/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medula Espinal/patologia , Análise de Sobrevida
7.
Virology ; 508: 134-149, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28531865

RESUMO

Infection of weanling C57BL/6 mice with the TE strain of Sindbis virus (SINV) causes nonfatal encephalomyelitis associated with hippocampal-based memory impairment that is partially prevented by treatment with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist (Potter et al., J Neurovirol 21:159, 2015). To determine the mechanism(s) of protection, lymph node and central nervous system (CNS) tissues from SINV-infected mice treated daily for 1 week with low (0.3mg/kg) or high (0.6mg/kg) dose DON were examined. DON treatment suppressed lymphocyte proliferation in cervical lymph nodes resulting in reduced CNS immune cell infiltration, inflammation, and cell death compared to untreated SINV-infected mice. Production of SINV-specific antibody and interferon-gamma were also impaired by DON treatment with a delay in virus clearance. Cessation of treatment allowed activation of the antiviral immune response and viral clearance, but revived CNS pathology, demonstrating the ability of the immune response to mediate both CNS damage and virus clearance.


Assuntos
Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/imunologia , Antivirais/administração & dosagem , Diazo-Oxo-Norleucina/administração & dosagem , Encefalomielite/tratamento farmacológico , Encefalomielite/imunologia , Glutamina/antagonistas & inibidores , Sindbis virus/fisiologia , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Encefalomielite/patologia , Encefalomielite/virologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sindbis virus/efeitos dos fármacos
8.
J Immunol ; 197(12): 4727-4735, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913648

RESUMO

Mycobacterium tuberculosis imposes a large global health burden as the airborne agent of tuberculosis. Mycobacterium tuberculosis has been flourishing in human populations for millennia and is therefore highly adapted to the lung environment. Alveolar macrophages, a major host cell niche for M. tuberculosis, are not only phagocytose inhaled microbes and particulate matter but are also crucial in catabolizing lung surfactant, a lipid-protein complex that lines the alveolar spaces. Because macrophage host defense properties can be regulated by surfactant and M. tuberculosis can use host lipids as a carbon source during infection, we sought to determine the receptor(s) involved in surfactant lipid uptake by human macrophages and whether the presence of those lipids within macrophages prior to infection with M. tuberculosis enhances bacterial growth. We show that preformed scavenger receptor CD36 is redistributed to the cell membrane following exposure to surfactant lipids and surfactant protein A. Subsequently, surfactant lipids and/or surfactant protein A enhance CD36 transcript and protein levels. We show that CD36 participates in surfactant lipid uptake by human macrophages, as CD36 knockdown reduces uptake of dipalmitoylphosphatidylcholine, the most prevalent surfactant lipid species. Finally, exposing human macrophages to surfactant lipids prior to infection augments M. tuberculosis growth in a CD36-dependent manner. Thus, we provide evidence that CD36 mediates surfactant lipid uptake by human macrophages and that M. tuberculosis exploits this function for growth.


Assuntos
Antígenos CD36/metabolismo , Espaço Intracelular/microbiologia , Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Antígenos CD36/genética , Células Cultivadas , Humanos , Imunidade Inata , Metabolismo dos Lipídeos , Pulmão/patologia , Macrófagos Alveolares/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fagocitose , Proteína A Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...