Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(9): 1390-1403, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770405

RESUMO

In recent years, ultrafast liquid chromatography/mass spectrometry methods have been extensively developed for the use in proteome profiling in biochemical studies. These methods are intended for express monitoring of cell response to biotic stimuli and elucidation of correlation of molecular changes with biological processes and phenotypical changes. New technologies, including the use of nanomaterials, are actively introduced to increase agricultural production. However, this requires complex approbation of new fertilizers and investigation of mechanisms underlying the biotic effects on the germination, growth, and development of plants. The aim of this work was to adapt the method of ultrafast chromatography/mass spectrometry for rapid quantitative profiling of molecular changes in 7-day-old wheat seedlings in response to pre-sowing seed treatment with iron compounds. The used method allows to analyze up to 200 samples per day; its practical value lies in the possibility of express proteomic diagnostics of the biotic action of new treatments, including those intended for agricultural needs. Changes in the regulation of photosynthesis, biosynthesis of chlorophyll and porphyrin- and tetrapyrrole-containing compounds, glycolysis (in shoot tissues), and polysaccharide metabolism (in root tissues) were shown after seed treatment with suspensions containing film-forming polymers (PEG 400, Na-CMC, Na2-EDTA), iron (II, III) nanoparticles, or iron (II) sulfate. Observations at the protein levels were consistent with the results of morphometry, superoxide dismutase activity assay, and microelement analysis of 3-day-old germinated seeds and shoots and roots of 7-day-old seedlings. A characteristic molecular signature involving proteins participating in the regulation of photosynthesis and glycolytic process was suggested as a potential marker of the biotic effects of seed treatment with iron compounds, which will be confirmed in further studies.

2.
Sci Rep ; 8(1): 3228, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459620

RESUMO

In this study, the anatomical and ultrastructural responses of Capsicum annuum to iron nanoparticles (Fe NPs) were determined. The results showed that the bio-effects of Fe NPs on plants could be positive or negative, depending on the additive concentrations. Low concentrations of Fe NPs were found to promote plant growth. Light and electron microscope analyses showed that the Fe NPs promoted plant growth by altering the leaf organization, and increasing the chloroplast number and grana stacking, as well as regulating the development of vascular bundles. Meanwhile, it was found that the Fe NPs could be absorbed in the roots, and then transported to the central cylinder in bio-available forms, where they were translocated and utilized by the leaves and stems. In contrast, high concentrations of Fe NPs appeared to be harmful to the plants, and the majority of Fe NPs were aggregated into cell walls and transported via the apoplastic pathway in the roots, which may potentially block the transfer of iron nutrients. Taken together, the aforementioned data showed that the rational use of Fe NPs could alleviate iron deficiency, and Fe NPs could be an ideal supply for Fe2+ ions fertilizers in agriculture.


Assuntos
Capsicum/efeitos dos fármacos , Ferro/metabolismo , Nanopartículas Metálicas , Células Vegetais/efeitos dos fármacos , Oligoelementos/metabolismo , Transporte Biológico , Capsicum/anatomia & histologia , Capsicum/crescimento & desenvolvimento , Cloroplastos/metabolismo , Microscopia , Microscopia Eletrônica , Biogênese de Organelas , Células Vegetais/ultraestrutura , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...