Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(1): 1748-1761, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576167

RESUMO

Electroluminescence (EL) from the singlet-excited (S1) state is the ideal choice for stable, high-performing deep-blue organic light-emitting diodes (OLEDs) owing to the advantages of an adequately short radiative lifetime, improved device durability, and low cost, which are the most important criteria for their commercialization. Herein, we present the design and synthesis of three donor-acceptor-donor (D-A-D)-configured deep-blue fluorescent materials (denoted as TC-1, TC-2, and TC-3) composed of a thioxanthone or diphenyl sulfonyl acceptor and phenyl carbazolyl donor. These systems exhibit strong deep-blue photoluminescence (422-432 nm) in solutions and redshifted emission (472-486 nm) in thin films. The solid-state photoluminescence quantum yield (PLQY) was estimated to be 78 and 94% for TC-2 and TC-3, respectively. TC-2 and TC-3 possess good molecular packing and large molecular cross-sectional areas, which not only improves the PLQY but enhances the triplet-triplet annihilation up-conversion (TTAUC) efficiency of fluorescent emitters. Furthermore, both compounds were applied as an acceptor for confirming their TTAUC property using bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium(III) (Ir(MDQ)2acac) as the sensitizer. Non-doped OLEDs based on TC-2 and TC-3 exhibit blue EL in the 461-476 nm range. In particular, TC-3 exhibits a maximum external quantum efficiency (EQEmax) of 5.1%, and its EL maximum is 476 nm. In addition, the three emitters were employed as hosts in red OLEDs using bis(1-phenylisoquinoline)(acetylacetonate)iridium(III) (Ir(piq)2acac) as the phosphorescent dopant. The red phosphorescent OLEDs based on TC-1, TC-2, and TC-3 achieve excellent EQEmax values of 21.6, 22.9, and 21.9%, respectively, and peak luminance efficiencies of 12.0, 14.0, and 12.3 cd A-1. These results highlight these fluorophores' versatility and promising prospects in practical OLED applications.

2.
Inorg Chem ; 61(23): 8898-8908, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35635511

RESUMO

Four blue-emissive iridium(III) complexes bearing a 3,3'-(1,3-phenylene)bis[1-isopropyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-ylidene]-based pincer chelate, which are derived from PXn·H3(PF6)2, where n = 1-4, and a cyclometalating chelate given from 9-[6-[5-(trifluoromethyl)-2λ2-pyrazol-3-yl]pyridin-2-yl]-9H-carbazole [(PzpyCz)H2], were successfully synthesized and employed as both an emissive dopant and a sensitizer in the fabrication of organic light-emitting diode (OLED) devices. These functional chelates around a IrIII atom occupied two mutually orthogonal coordination arrangements and adopted the so-called bis-tridentate architectures. Theoretical studies confirmed the dominance of the electronic transition by the pincer chelates, while the dianionic PzpyCz chelate was only acting as a spectator group. Phosphorescent OLED devices with [Ir(PX3)(PzpyCz)] (B3) as the dopant gave a maximum external quantum efficiency (EQE) of 21.93% and CIExy of (0.144, 0.157) and was subjected to only ∼10% of roll-off in efficiency at a high current density of 1000 cd m-2. Blue-emissive narrow-band hyperphosphorescence was also obtained using B3 as an assistant sensitizer and ν-DABNA as a terminal emitter, giving both an improved EQE of 26.17% and CIExy of (0.116, 0.144), confirming efficient Förster resonance energy transfer in this hyperdevice.

3.
ACS Appl Mater Interfaces ; 13(13): 15437-15447, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33759493

RESUMO

A new class of bis-tridentate Ir(III) complexes (Dap-1-4) was synthesized using carbene pincer pro-chelates PC1·H3(PF6)2 or PC2·H3(PF6)2 with either imidazolylidene or imidazo[4,5-b]pyridin-2-ylidene appendages, together with a second cyclometalating 2,6-diaryoxypyridine chelate, L1H2 and L2H2, differed by a NMe2 donor at the central pyridinyl fragment. The respective emission tuning between the ultraviolet and blue region was rationalized using time-dependent density functional theory (TD-DFT) approaches. Next, a highly efficient blue emitter (Dap-5) was synthesized by concomitant addition of two methyl groups and a single CF3 substituent at the central phenyl and peripheral imidazo[4,5-b]pyridin-2-ylidene entities of the carbene pincer chelate, respectively. The organic light-emitting diode (OLED) device with 15 wt % Dap-5 in DPEPO shows electroluminescence at 468 nm and with CIE (0.14, 0.15) and a max external quantum efficiency (max EQE) of 16.8% with low efficiency roll-off (EQE of 14.4% at 1000 cd m-2); the latter is attributed to the relatively shortened triplet excited-state radiative lifetime. These results highlight the adequateness of bis-tridentate Ir(III) phosphors in fabrication of practical blue-emitting OLEDs.

4.
Inorg Chem ; 59(1): 523-532, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31809032

RESUMO

Synthesis of the multidentate coordinated chelate N3C-H2, composed of a linked functional pyridyl pyrazole fragment plus a peripheral phenyl and pyridyl unit, was obtained using a multistep protocol. Preparation of Ir(III) metal complexes bearing a N3C chelate in the tridentate (κ3), tetradentate (κ4), and pentadentate (κ5) modes was executed en route from two nonemissive dimer intermediates [Ir(κ3-N3CH)Cl2]2 (1) and [Ir(κ4-N3C)Cl]2 (2). Next, a series of mononuclear Ir(III) complexes with the formulas [Ir(κ4-N3C)Cl(py)] (3), [Ir(κ4-N3C)Cl(dmap)] (4), [Ir(κ4-N3C)Cl(mpzH)] (5), and [Ir(κ4-N3C)Cl(dmpzH)] (6), as well as diiridium complexes [Ir2(κ5-N3C)(mpz)2(CO)(H)2] (7) and [Ir2(κ5-N3C)(dmpz)2(CO)(H)2] (8), were obtained upon treatment of dimer 2 with pyridine (py), 4-dimethylaminopyridine (dmap), 4-methylpyrazole (mpzH), and 3,5-dimethylpyrazole (dmpzH), respectively. These Ir(III) metal complexes were identified using spectroscopic methods and by X-ray crystallographic analysis of representative derivatives 3, 5, and 7. Their photophysical and electrochemical properties were investigated and confirmed by the theoretical simulations. Notably, green-emitting organic light-emitting diode (OLED) on the basis of Ir(III) complex 7 gives a maximum external quantum efficiency up to 25.1%. This result sheds light on the enormous potential of this tetradentate coordinated chelate in the development of highly efficient iridium complexes for OLED applications.

5.
Inorg Chem ; 58(16): 10944-10954, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31365235

RESUMO

Bis-tridentate Ir(III) metal complexes bring forth interesting photophysical properties, among which the orthogonal arranged, planar tridentate chelates could increase the emission efficiency due to the greater rigidity and, in the meantime, allow strong interligand stacking that could deteriorate the emission efficiency. We bypassed this hurdle by design of five bis-tridentate Ir(III) complexes (1-5), to which both of their monoanionic ancillary and dianionic chromophoric chelate were functionalized derivative of 2-pyrazolyl-6-phenylpyridine, i.e. pzpyphH2 parent chelate. Hence, addition of phenyl substituent to the pyrazolyl fragment of pzpyphH2 gave rise to the precursors of monoanionic chelate (A1H-A3H), on which the additional tert-butyl and/or methoxy groups were introduced at the selected positions for tuning their steric and electronic properties, while precursors of dianionic chelates was judiciously prepared with an isoquniolinyl central unit on pziqphH2 in giving the red-shifted emission (cf. L1H2 and L2H2). Factors affected their photophysical properties were discussed by theoretical methods based on DFT and TD-DFT calculation, confirming that the T1 excited state of all investigated Ir(III) complexes shows a mixed metal-to-ligand charge transfer (MLCT), intraligand charge transfer (ILCT), ligand-to-ligand charge transfer (LLCT), and ligand-centered (LC) transition character. In contrast, the poor quantum yield of 3 is due to the facilitation of the nonradiative decay in comparison to the radiative process. As for potential OLED applications, Ir(III) complex 2 gives superior performance with max. efficiencies of 28.17%, 41.25 cd·A-1 and 37.03 lm·W-1, CIEx,y = 0.63, 0.37 at 50 mA cm-2, and small efficiency roll-off.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...