Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(6): 2913-2928, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37160706

RESUMO

The main goal of treating any Helicobacter pylori (H. pylori)-related gastrointestinal disease is completely eradicating infection. Falling eradication efficiency, off-target effects, and patient noncompliance with prolonged and broad spectrums have sparked clinical interest in exploring other effective, safer therapeutic choices. As natural substances are risk-free and privileged with high levels of antibacterial activity, most of these natural chemical's specific modes of action are unknown. With the aid of in silico molecular docking-based virtual screening studies and molecular dynamic simulations, the current study is intended to gather data on numerous such natural chemicals and assess their affinity for the S-ribosyl homocysteine lyase (LuxS) protein of H. pylori. The ligand with the highest binding energy with LuxS, glucoraphanin, catechin gallate and epigallocatechin gallate were rationally selected for further computational analysis. The solution stability of the three compounds' optimal docking postures with LuxS was initially assessed using long-run molecular dynamics simulations. Using molecular dynamics simulation, the epigallocatechin gallate was found to be the most stable molecule with the highest binding free energy, indicating that it might compete with the natural ligand of the inhibitors. According to ADMET analysis, his phytochemical was a promising therapeutic candidate for an antibacterial action since it had a range of physicochemical, pharmacokinetic, and drug-like qualities and had no discernible adverse effects. Additional in vitro, in vivo, and clinical trials are needed to confirm the drug's precise efficacy during H. pylori infection.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , Helicobacter pylori , Humanos , Simulação de Dinâmica Molecular , Ensaios de Triagem em Larga Escala , Simulação de Acoplamento Molecular , Ligantes , Produtos Biológicos/metabolismo , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/metabolismo
2.
Radiat Oncol J ; 39(3): 159-166, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34610654

RESUMO

Biological dosimetry is the measurement of radiation-induced changes in the human to measure short and long-term health risks. Biodosimetry offers an independent means of obtaining dose information and also provides diagnostic information on the potential for "partial-body" exposure information using biological indicators and otherwise based on computer modeling, dose reconstruction, and physical dosimetry. A variety of biodosimetry tools are available and some features make some more valuable than others. Among the available biodosimetry tool, cytogenetic biodosimetry methods occupy an exclusive and advantageous position. The cytogenetic analysis can complement physical dosimetry by confirming or ruling out an accidental radiological exposure or overexposures. We are discussing the recent developments and adaptability of currently available cytogenetic biological dosimetry assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...