Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 2792-2807, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38421619

RESUMO

microRNA (miRNA) mimics are an emerging class of oligonucleotide therapeutics, with a few compounds already in clinical stages. Synthetic miRNAs are able to restore downregulated levels of intrinsic miRNAs, allowing for parallel regulation of multiple genes involved in a particular disease. In this work, we examined the influence of chemical modifications patterns in miR-200c mimics, assessing the regulation of a selection of target messenger RNAs (mRNA) and, subsequently, of the whole transcriptome in A549 cells. We have probed 37 mimics and provided an initial set of instructions for designing miRNA mimics with potency and selectivity similar to an unmodified miRNA duplex. Additionally, we have examined the stability of selected mimics in serum. Finally, the selected two modification patterns were translated to two other miRNAs, miR-34a and miR-155. To differing degrees, these designs acted on target mRNAs in a similar manner to the unmodified mimic. Here, for the first time, we describe a structured overview of 'miRNA mimics modification templates' that are chemically stabilised and optimised for use in an in vitro set up and highlight the need of further sequence specific optimization when mimics are to be used beyond in vitro tool experiments.


Assuntos
MicroRNAs , MicroRNAs/genética , Relação Estrutura-Atividade , Biomimética , Humanos
2.
Mol Ther Nucleic Acids ; 33: 898-907, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37680982

RESUMO

MicroRNAs are attractive therapeutic targets in many diseases, including chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Among microRNA inhibitors antimiRs have been proven successful in lowering aberrant microRNA levels in the clinic. We present a set of antimiRs targeting miR-34a, which has been shown to be dysregulated in chronic lung diseases. The tool compounds were taken up by a bronchial epithelial cell line and primary human bronchial epithelial cells, followed by efficient knockdown of miR-34a. Similar results were observed in 3D differentiated primary human bronchial epithelial cells cultured at the air-liquid interface. Varying chemical properties of antimiRs had significant impact on cellular uptake and potency, resulting in effective tool compounds for use in lung-relevant cellular systems. This report demonstrates gymnotic antimiR uptake and activity in 3D epithelial cell culture after apical administration, mimicking inhalation conditions.

3.
Mol Cancer Ther ; 18(12): 2343-2356, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515294

RESUMO

The pattern recognition receptor RIG-I plays an important role in the recognition of nonself RNA and antiviral immunity. RIG-I's natural ligand, triphosphate RNA (ppp-RNA), is proposed to be a valuable addition to the growing arsenal of cancer immunotherapy treatment options. In this study, we present comprehensive data validating the concept and utility of treatment with synthetic RIG-I agonist ppp-RNA for the therapy of human cancer, with melanoma as potential entry indication amenable to intratumoral treatment. Using mRNA expression data of human tumors, we demonstrate that RIG-I expression is closely correlated to cellular and cytokine immune activation in a wide variety of tumor types. Furthermore, we confirm susceptibility of cancer cells to ppp-RNA treatment in different cellular models of human melanoma, revealing unexpected heterogeneity between cell lines in their susceptibility to RNA agonist features, including sequence, secondary structures, and presence of triphosphate. Cellular responses to RNA treatment (induction of type I IFN, FasR, MHC-I, and cytotoxicity) were demonstrated to be RIG-I dependent using KO cells. Following ppp-RNA treatment of a mouse melanoma model, we observed significant local and systemic antitumor effects and survival benefits. These were associated with type I IFN response, tumor cell apoptosis, and innate and adaptive immune cell activation. For the first time, we demonstrate systemic presence of tumor antigen-specific CTLs following treatment with RIG-I agonists. Despite potential challenges in the generation and formulation of potent RIG-I agonists, ppp-RNA or analogues thereof have the potential to play an important role for cancer treatment in the next wave of immunotherapy.


Assuntos
Proteína DEAD-box 58/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Polifosfatos/uso terapêutico , RNA/metabolismo , Animais , Linhagem Celular Tumoral , Proteína DEAD-box 58/farmacologia , Humanos , Melanoma/patologia , Camundongos , Polifosfatos/farmacologia , Receptores Imunológicos , Transdução de Sinais , Transfecção
4.
Chemistry ; 22(43): 15350-15359, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27608298

RESUMO

Structural features and internal dynamics of inosine-containing RNAs are poorly understood. NMR studies of such RNAs require 13 C,15 N-labeling, which cannot be achieved using in vitro transcription as inosine and guanosine are not distinguished by RNA polymerase. Herein, we report the synthesis of an inosine phosphoramidite with selective 13 C8 and 15 N7-isotope incorporation in the base and uniform 13 C-labeling of the ribose. Chemical synthesis of an RNA duplex containing four consecutive IU base pairs with this optimized isotope-labeling scheme greatly simplifies NMR spectra and resolves signal overlap. The absence of detectable NMR signals of imino protons and unusual inter-residue NOE correlations in this RNA indicate deviations from standard A-form geometry, consistent with reduced stability of this duplex seen in UV melting studies compared to its nonedited RNA counterparts. These studies indicate that the introduction of IU base pairs distorts and destabilizes RNA helices significantly compared to the also noncanonical GU base-pairs. Our optimized isotope-labeling scheme enables high-resolution NMR studies of inosine-edited RNAs.


Assuntos
Guanosina/química , Inosina/química , Marcação por Isótopo , Compostos Organofosforados/química , RNA/química , Ribose/química , Pareamento de Bases , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Prótons
5.
Nat Genet ; 48(4): 417-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928226

RESUMO

The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases.


Assuntos
Metilação de DNA , Elementos Facilitadores Genéticos , Animais , Padronização Corporal , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Xenopus , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Angew Chem Int Ed Engl ; 54(6): 1946-9, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25522332

RESUMO

We report the development of dendritic siRNA nanostructures that are able to penetrate even difficult to transfect cells such as neurons with the help of a special receptor ligand. The nanoparticles elicit strong siRNA responses, despite the dendritic structure. An siRNA dendrimer directed against the crucial rabies virus (RABV) nucleoprotein (N protein) and phosphoprotein (P protein) allowed the suppression of the virus titer in neurons below the detection limit. The cell-penetrating siRNA dendrimers, which were assembled using click chemistry, open up new avenues toward finding novel molecules able to cure this deadly disease.


Assuntos
Dendrímeros , Nanoestruturas , RNA Interferente Pequeno/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Angew Chem Int Ed Engl ; 53(1): 315-8, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24281791

RESUMO

A 5-formyl-2'-deoxycytidine (fdC) phosphoramidite building block that enables the synthesis of fdC-containing DNA with excellent purity and yield has been developed. In combination with phosphoramidites for 5-methyl-dC, 5-hydroxymethyl-dC, and carboxy-dC, it was possible to prepare a segment of the OCT-4 promoter that contains all four epigenetic bases. Because of the enormous interest in these new epigenetic bases, the ability to insert all four of them into DNA should be of great value for the scientific community.


Assuntos
DNA/síntese química , Desoxicitidina/análogos & derivados , Nucleosídeos/genética , Desoxicitidina/síntese química , Epigênese Genética , Estrutura Molecular
8.
Cell ; 152(5): 1146-59, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23434322

RESUMO

Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.


Assuntos
5-Metilcitosina/análise , Citosina/análogos & derivados , Metilação de DNA , 5-Metilcitosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Citosina/análise , Citosina/metabolismo , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 4 Semelhante a Kruppel , Espectrometria de Massas , Camundongos , Oxirredução , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição de Fator Regulador X , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Chemistry ; 17(49): 13782-8, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22069110

RESUMO

5-Formylcytosine (fC or (5-CHO)dC) and 5-carboxylcytosine (caC or (5-COOH)dC) have recently been identified as constituents of mammalian DNA. The nucleosides are formed from 5-methylcytosine (mC or (5-Me)dC) via 5-hydroxymethylcytosine (hmC or (5-HOMe)dC) and are possible intermediates of an active DNA demethylation process. Here we show efficient syntheses of phosphoramidites which enable the synthesis of DNA strands containing these cytosine modifications based on Pd(0)-catalyzed functionalization of 5-iododeoxycytidine. The first crystal structure of fC reveals the existence of an intramolecular H-bond between the exocyclic amine and the formyl group, which controls the conformation of the formyl substituent. Using a newly designed in vitro mutagenicity assay we show that fC and caC are only marginally mutagenic, which is a prerequisite for the bases to function as epigenetic control units.


Assuntos
Citosina/análogos & derivados , Citosina/síntese química , Mutagênicos/síntese química , Mutagênicos/farmacologia , Oligonucleotídeos/síntese química , Oligonucleotídeos/farmacologia , 5-Metilcitosina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Citosina/química , Citosina/farmacologia , Metilação de DNA , Estrutura Molecular , Mutagênicos/química , Oligonucleotídeos/química , Compostos Organofosforados/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...