Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(50): 35766-35772, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38115984

RESUMO

The significance of developing a selective and sensitive sensor for quality control purposes is underscored by the prevalent use of kojic acid (KA) in cosmetics, pharmaceuticals, and food items. KA's utility stems from its ability to inhibit tyrosinase activity. However, the instability of KA and its potential adverse effects have created a pressing need for accurate and sensitive sensors capable of analyzing real samples. This research introduces an electrochemical ratiometric sensor designed to accurately detect KA in actual cosmetic and food samples. The ratiometric sensor offers distinct advantages such as enhanced selectivity, reproducibility, and sensitivity. It achieves this by leveraging the ratio between two output signals, thereby producing reliable and undistorted results. The sensor is constructed by modifying a Glassy Carbon Electrode (GCE) with a nanocomposite consisting of Ti3C2 MXene, Prussian blue, and gold nanoparticles. The incorporation of MXene and gold nanoparticles heightens sensitivity and reduces impedance. Meanwhile, the Prussian blue signal diminishes proportionally with increasing KA concentration, forming the basis for the ratiometric sensing mechanism. The outcomes of the study reveal a broad linear range (1-600 µM), a low detection limit (1 µM), and strong selectivity for KA. These findings suggest the sensor's potential efficacy in quality control across cosmetics, pharmaceuticals, and food products.

2.
Front Endocrinol (Lausanne) ; 14: 1242387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745698

RESUMO

Introduction: MIRAGE syndrome is a rare disease characterized by myelodysplasia, infection, growth restriction, adrenal hypoplasia, genital phenotypes, and enteropathy. Herein, we report the case of a girl with MIRAGE syndrome who presented with adrenal insufficiency and chronic diarrhea. Case presentation: The patient was born at 29 + 6 weeks of gestational age with a birth weight of 656 g (<3p). Her height and head circumference were also <3p. At birth, she presented with respiratory distress, meconium staining, and pneumomediastinum, which were managed with high-frequency ventilation and empirical antibiotics. Physical examination showed generalized hyperpigmentation and normal female genitalia. A few days after birth, polyuria and hypotension developed, and laboratory findings revealed hypoglycemia, hyponatremia, and hyperkalemia. Plasma adrenocorticotropic hormone levels were elevated with low serum cortisol levels and high plasma renin activity, which were suggestive of adrenal insufficiency. Hydrocortisone and fludrocortisone were introduced and maintained, and hyperpigmentation attenuated with time. Both kidneys looked dysplastic, and adrenal glands could not be traced on abdominal ultrasound. From the early days of life, thrombocytopenia and anemia were detected, but not to life-threatening level and slowly recovered up to the normal range. Despite aggressive nutritional support, weight gain and growth spurt were severely retarded during the hospital stay. Additionally, after introducing enteral feeding, she experienced severe diarrhea and subsequent perineal skin rashes and ulcerations. Fecal calprotectin level was highly elevated; however, a small bowel biopsy resulted in non-specific submucosal congestion. The patient was diagnosed with MIRAGE syndrome with SAMD9 gene mutation. She was discharged with tube feeding and elemental formula feeding continued, but chronic diarrhea persisted. By the time of the last follow-up at 15 months of corrected age, she was fortunately not subjected to severe invasive infection and myelodysplastic syndrome. However, she was dependent on tube feeding and demonstrated a severe developmental delay equivalent to approximately 5-6 months of age. Conclusion: The early diagnosis of adrenal crisis and hormone replacement therapy can save the life of -patients with MIRAGE syndrome; however, chronic intractable diarrhea and growth and developmental delay continue to impede the patient's well-being.


Assuntos
Insuficiência Adrenal , Hiperpigmentação , Síndromes Mielodisplásicas , Humanos , Recém-Nascido , Lactente , Feminino , Retardo do Crescimento Fetal/genética , Peptídeos e Proteínas de Sinalização Intracelular , Insuficiência Adrenal/complicações , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/genética , Recém-Nascido Prematuro , Diarreia/genética , Síndromes Mielodisplásicas/genética
3.
Bioelectrochemistry ; 150: 108364, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36621051

RESUMO

This study proposed a CRISPR/Cas13a-powered electrochemical multiplexed biosensor for detecting SARS-CoV-2 RNA strands. Current SARS-CoV-2 diagnostic methods, such as reverse transcription PCR (RT-PCR), are primarily based on nucleic acid amplification (NAA) and reverse transcription (RT) processes, which have been linked to significant issues such as cross-contamination and long turnaround times. Using a CRISPR/Cas13a system integrated onto an electrochemical biosensor, we present a multiplexed and NAA-free strategy for detecting SARS-CoV-2 RNA fragments. SARS-CoV-2 S and Orf1ab genes were detected in both synthetic and clinical samples. The CRISPR/Cas13a-powered biosensor achieved low detection limits of 2.5 and 4.5 ag/µL for the S and Orf1ab genes, respectively, successfully meeting the sensitivity requirement. Furthermore, the biosensor's specificity, simplicity, and universality may position it as a potential rival to RT-PCR.


Assuntos
COVID-19 , RNA Viral , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , COVID-19/diagnóstico , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
4.
Anal Chem ; 94(49): 17020-17030, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36414244

RESUMO

A novel electrochemical sensor was constructed based on an enzyme-mediated physiological reaction between neurotransmitter serotonin per-oxidation to reconstruct dual-molecule 4,4'-dimeric-serotonin self-assembled derivative, and the potential biomedical application of the multi-functional nano-platform was explored. Serotonin accelerated the catalytic activity to form a dual molecule at the C4 position and created phenolic radical-radical coupling intermediates in a peroxidase reaction system. Here, 4,4' dimeric-serotonin possessed the capability to recognize intermolecular interactions between amine groups. The excellent quenching effects on top of the gold surface electrode system archive logically inexpensive and straightforward analytical demands. In biochemical sensing analysis, the serotonin dimerization concept demonstrated a robust, low-cost, and highly sensitive immunosensor, presenting the potential of quantifying serotonin at point-of-care (POC) testing. The high-specificity serotonin electrochemical sensor had a limit of detection (LOD) of 0.9 nM in phosphate buffer and 1.4 nM in human serum samples and a linear range of 10 to 400 with a sensitivity of 2.0 × 10-2 nM. The bivalent 4,4'-dimer-serotonin interaction strategy provides a promising platform for serotonin biosensing with high specificity, sensitivity, selectivity, stability, and reproducibility. The self-assembling gold surface electrochemical system presents a new analytical method for explicitly detecting tiny neurotransmitter-responsive serotonin neuromolecules.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Serotonina/análise , Reprodutibilidade dos Testes , Imunoensaio/métodos , Ouro/química , Eletrodos , Limite de Detecção , Polímeros , Neurotransmissores/análise , Nanopartículas Metálicas/química
5.
BMC Infect Dis ; 22(1): 254, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287602

RESUMO

BACKGROUND: Racial/ethnic minorities are at higher risk for severe COVID-19. This may be related to social determinants that lead to chronic inflammatory states. The aims of the study were to determine if there are racial/ethnic disparities with inflammatory markers and association of methylprednisolone to in hospital survival. METHODS: This was a secondary analysis of a retrospective cohort study of patients ≥ 18 years of age and admitted for severe COVID-19 pneumonia between March and June 2020 in 13 Hospitals in New Jersey, United States. Patients who received other formulation of corticosteroids were not included. Area under the receiver operating characteristics curves were performed to test for discriminatory ability of each inflammatory makers. Univariate and multivariate Cox regression assessed the association of variables to in hospital survival. RESULTS: Propensity matched sample (n = 759) between no methylprednisolone (n = 380) and methylprednisolone (n = 379) had 338 Whites, 102 Blacks, 61 Asian/Indians, and 251 non-Black non-White Hispanics. Compared to CRP, area under receiving operating characteristic curve for d-dimer in Hispanics (0.742) was statistically different (DeLong Test P = 0.0041). Multivariate cox regression showed that different variables in Blacks [age ≥ 60 years (HR = 3.71, P = 0.0281), mechanical ventilation (HR = 5.07, P = 0.0281) and creatinine ≥ 1.5 mg/dL (HR = 3.61, P = 0.0007)], Whites [cancer (HR = 1.68, P = 0.0213), qSOFA score of 1 (HR = 1.81, P = 0.0213), qSOFA score of 2 (HR = 5.16, P < 0.0001), qSOFA score of 3 (HR = 11.81, P < 0.0001) and creatinine ≥ 1.5 mg/dL (HR = 2.16, P = 0.0006)], Hispanics [hypertension (HR = 2.52, P = 0.0007), cancer (HR = 2.99, P = 0.0244 and D-dimer ≥ 2 mcg/mL (HR = 2.22, P = 0.0077)], and Asian/Indians [ chronic kidney disease (HR = 6.36, P = 0.0031) and CRP > 20 mg/L (HR = 5.02, P = 0.0032)] were statistically significant for mortality. Low dose and high dose methylprednisolone were significantly associated with prolonged survival in Whites [low dose (HR = 0.37, P < 0.0001) and high dose (HR = 0.48, P < 0.0183)] and Asian/Indians [low dose (HR = 0.13, P = 0.0101) and high dose (HR = 0.15, P = 0.01)]. However, high dose was not associated with improved survival compared to low dose. Methylprednisolone was not associated with prolonged survival in Blacks and Hispanics. CONCLUSION: Racial/Ethnic disparities with inflammatory markers preclude the use of one marker as a predictor of survival. Methylprednisolone is associated with prolonged survival in Asian/Indians and Whites.


Assuntos
Tratamento Farmacológico da COVID-19 , Metilprednisolona , Etnicidade , Humanos , Inflamação/tratamento farmacológico , Metilprednisolona/uso terapêutico , Pessoa de Meia-Idade , Estudos Retrospectivos , Estados Unidos/epidemiologia
6.
Bioelectrochemistry ; 144: 108046, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35030457

RESUMO

We have developed a powerful biosensing strategy for immobilizing histidine-tagged (His-Tag)-oriented recombinant nano-protein immobilization on a chemically modified glassy carbon electrode (GCE) surfaces via (S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid (ANTA) acting as a chelating Ni2+ centered interaction. Here, we introduce a label-free electro-sensor to quantify cortisol levels in saliva samples for point-of-care testing (POCT). The high specificity of the chemically modified GCE was established by genetically bio-engineered metal-binding sites on the selected recombinant apoferritin (R-AFTN) nano-protein to impart functionality to its surface and by coating the carbon surface with the self-assembled monolayers of 4-aminobenzoic acid (4-ABA) attached to ANTA groups complexed with Ni2+ transition metal ions. Despite the variety of conventional assays available to monitor cortisol levels, they require bulky exterior outfits, which hinders use in the healthcare systems. Therefore, we performed a rapid, easy-to-implement, and low-cost quantitative electro-sensor to enable the real-time detection of cortisol levels in saliva samples. As a result, the cortisol electro-sensor fabricated with high specificity utilizing a GCE could measure cortisol levels with a detection limit of 0.95 ng/ml and sensitivity of 7.91 µA/(ng/mL), which is a practical approach in human saliva. Thus, protein nanoprobe-based cortisol biosensing showed high sensitivity and selectivity for the direct electro-sensing of cortisol for POCT.


Assuntos
Hidrocortisona
7.
Anal Bioanal Chem ; 414(10): 3205-3217, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34617153

RESUMO

Sensitive and selective determination of protein biomarkers with high accuracy often remains a great challenge due to their existence in the human body at an exceptionally low concentration level. Therefore, sensing mechanisms that are easy to use, simple, and capable of accurate quantification of analyte are still in development to detect biomarkers at a low concentration level. To meet this end, we demonstrated a methodology to detect thrombin in serum at low concentration levels using polypyrrole (PPy)-palladium (Pd)nanoparticle-based hybrid transducers using liposomes encapsulated redox marker as a label. The morphology of Ppy-Pd composites was characterized by scanning electron microscopy, and the hybrid structure provided excellent binding and detection platform for thrombin detection in both buffer and serum solutions. For quantitative measurement of thrombin in PBS and serum, the change in current was monitored using differential pulse voltammetry, and the calculated limit of quantification (LOQ) and limit of detection (LOD) for the linear segment (0.1-1000 nM of thrombin) were 1.1 pM and 0.3 pM, in serum, respectively. The sensors also exhibited good stability and excellent selectivity towards the detection of thrombin, and thus make it a strong candidate for adopting its sensing applications in biomarker detection technologies.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanocompostos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Humanos , Limite de Detecção , Lipossomos , Paládio/química , Polímeros/química , Pirróis/química , Trombina/química
8.
Biosens Bioelectron ; 195: 113649, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555637

RESUMO

Considering the worldwide health crisis associated with highly contagious severe respiratory disease of COVID-19 outbreak, the development of multiplexed, simple and rapid diagnostic platforms to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in high demand. Here, a nucleic acid amplification-free electrochemical biosensor based on four-way junction (4-WJ) hybridization is presented for the detection of SARS-CoV-2. To form a 4-WJ structure, a Universal DNA-Hairpin (UDH) probe is hybridized with two adaptor strands and a SARS-CoV-2 RNA target. One of the adaptor strands is functionalized with a redox mediator that can be detected using an electrochemical biosensor. The biosensor could simultaneously detect 5.0 and 6.8 ag/µL of S and Orf1ab genes, respectively, within 1 h. The biosensor was evaluated with 21 clinical samples (16 positive and 5 negative). The results revealed a satisfactory agreement with qRT-PCR. In conclusion, this biosensor has the potential to be used as an on-site, real-time diagnostic test for COVID-19.


Assuntos
Técnicas Biossensoriais , COVID-19 , Testes Diagnósticos de Rotina , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , SARS-CoV-2 , Sensibilidade e Especificidade
9.
Sensors (Basel) ; 21(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34300644

RESUMO

In this report, we present an enzyme deposited Au electrode for an electrochemical measurement of acetylacetic acid (AcAc) in urine. The electrode has an immobilized layer of a mixture of D-ß-hydroxybutyrate dehydrogenase (HBDH) and nicotinamide adenine dinucleotide (NADH) as sensing material to investigate its electroanalytical properties by means of cyclic voltammetry (CV). The modified electrodes are used for the detection of AcAc and present a linear current increase when the AcAc concentration increases. The electrode presents a limit of detection (LOD) of 6.25 mg/dL in the range of 6.25-100 mg/dL for investigation of clinical relevance. Finally, the electrode was evaluated using 20 patient samples. The measured results of urine ketone by the developed electrode were compared with the clinical results from a commercial kit, and the analysis showed good agreement. The proposed electrode was demonstrated to be a very promising platform as a miniaturized electrochemical analyzer for point-of-care monitoring of the critical biochemical parameters such as urine ketone.


Assuntos
Cetoacidose Diabética , Corpos Cetônicos , Cetoacidose Diabética/diagnóstico , Técnicas Eletroquímicas , Eletrodos , Humanos , Limite de Detecção
10.
J Nanosci Nanotechnol ; 21(8): 4139-4144, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714293

RESUMO

Parathyroid hormone (PTH) is a hormone that plays a critical role in bone remodeling because it regulates the calcium levels. Either higher or lower than normal range of PTH release can cause serious metabolic disorders such as hyperparathyroidism or hypoparathyroidism. Therefore, the demand of highly sensitive monitoring sensor of PTH is on the rise. However, due to its presence of small size and low concentration in serum, the monitoring of a small change of PTH level is extremely difficult. In this article, we suggested the fabrication of europium complex doped nanoparticles conjugated with PTH antibodies for the sensitive fluorescence monitoring of PTH. For the synthesis of europium complex, 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (NTA) and trioctylphosphine oxide (TOPO) are used to encapsulate europium. The amphiphilic polymer, polyvinylpyrrolidone (PVP), was applied to hydrophobic europium complex, and then silica shell was synthesized on the complex. Using the europium complex doped silica nanoparticles, we could obtain approximately 4.24-fold enhanced fluorescence in low levels of PTH in PBS, when compared to the conventional enzyme-linked immunosorbent assay (ELISA). In addition, we could obtain the sensitive PTH immunoassay in PTH spiked serum with high selectivity.


Assuntos
Nanopartículas , Hormônio Paratireóideo , Cálcio , Európio , Imunoensaio , Dióxido de Silício
11.
J Nanosci Nanotechnol ; 20(11): 7163-7168, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604576

RESUMO

A label-free electrochemical impedimetric immunosensor for the detection of Triiodothyronine-a thyroid hormone that functions as the biomarker for monitoring for thyroid dysfunction was developed. The gold nanoparticle-modified electrode was employed to achieve the sensitive determination of Triiodothyronine at a low concentration level. The gold nanoparticle layer on the gold electrode was generated by chronoamperometry method and its resulting characteristics were investigated by scanning electron microscopy. Redox probe [Fe(CN)6]3-/4- and electrochemical impedance spec-troscopy was used for both evaluation of the immobilization of anti-Triiodothyronine antibody on the electrode surface and quantitative determination of target Triiodothyronine in different concentrations. The electrode with absorbed antibodies showed significant changes in charge transfer resistance upon binding the antigen, which resulted in an increase in normalized impedance change as the addition of antigen concentrations over a dynamic linear range of 0.01-100 ng/ml. These results indicated that the proposed immunosensor could be a potential alternative method for determination of Triiodothyronine in clinics with the advantage of low cost and less time-consuming.

12.
Mikrochim Acta ; 187(5): 277, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32314063

RESUMO

MXene nanosheets of type Ti3C2Tx were modified with ß-hydroxybutyrate dehydrogenase and then used as a biosensor for amperometric sensing of ß-hydroxybutyrate. The MXene and the nanocomposite were characterized by X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The MXene has a layered structure and proved to be an excellent immobilization matrix providing good compatibility with the enzyme ß-hydroxybutyrate dehydrogenase. The MXene-based biosensor, best operated at a potential of - 0.35 V (vs. Ag/AgCl), displays a wide linear range (0.36 to 17.9 mM), a sensitivity of 0.480 µA mM-1 cm-2, and a low detection limit (45 µM). The biosensor was successfully applied to the determination of ß-hydroxybutyrate in (spiked) real serum samples. Graphical abstract Schematic representation of the synthesis and decoration of Mxene 2D sheets with ß-hydroxybutyrate dehydrogenase for the amperometric determination of ß-hydroxybutyric acid.


Assuntos
Ácido 3-Hidroxibutírico/análise , Compostos Inorgânicos de Carbono/química , Hidroxibutirato Desidrogenase/química , Nanocompostos/química , Titânio/química , Ácido 3-Hidroxibutírico/metabolismo , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Hidroxibutirato Desidrogenase/metabolismo , Tamanho da Partícula , Propriedades de Superfície
13.
Micromachines (Basel) ; 10(11)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718045

RESUMO

Here, we report a simple and effective method for capturing and displacement of gram-negative bacteria using aptamer-modified microbeads and acoustophoresis. As acoustophoresis allows for simultaneous washing and size-dependent separation in continuous flow mode, we efficiently obtained gram-negative bacteria that showed high affinity without any additional washing steps. The proposed device has a simple and efficient channel design, utilizing a long, square-shaped microchannel that shows excellent separation performance in terms of the purity, recovery, and concentration factor. Microbeads (10 µm) coated with the GN6 aptamer can specifically bind gram-negative bacteria. After incubation of bacteria culture sample with aptamer affinity bead, gram-negative bacteria-bound microbeads, and other unbound/contaminants can be separated by size with high purity and recovery. The device demonstrated excellent separation performance, with high recovery (up to 98%), high purity (up to 99%), and a high-volume rate (500 µL/min). The acoustophoretic separation performances were conducted using 5 Gram-negative bacteria and 5 Gram-positive bacteria. Thanks to GN6 aptamer's binding affinity, aptamer affinity bead also showed binding affinity to multiple strains of gram-negative bacteria, but not to gram-positive bacteria. GN6 coated bead can capture Gram-negative bacteria but not Gram-positive bacteria. This study may present a different perspective in the field of early diagnosis in bacterial infectious diseases. In addition to detecting living bacteria or bacteria-derived biomarkers, this protocol can be extended to monitoring the contamination of water resources and may aid quick responses to bioterrorism and pathogenic bacterial infections.

14.
Biosens Bioelectron ; 141: 111468, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279178

RESUMO

Development of a very sensitive biosensor is accompanied with an inevitable shrinkage in the linear detection range. Here, we developed an electrochemical biosensor with a novel methodology to detect microRNA-21 (miR21) at an ultralow level and broad linear detection range. A three-way junction RNA structure was designed harboring (i) a methylene blue (MB)-modified hairpin structure at its one leg to function as the sensing moiety and (ii) the other two legs to be further hybridized with barcode gold nanoparticles (MB/barG) as the signal amplifiers. Addition of target miR21 resulted in opening the hairpin moiety and subsequent hybridization with DNA-modified gold nanoflower/platinum electrode (GNF@Pt) to form the MB-3 sensor. Inspired by the relay-race run, to extend the dynamic detection range and increase the sensitivity of the biosensor, MB/barG was added to form the second detection modality (MBG-3). The combined sensor required very low sample volume (4 µL) and could identify 135 aM or 324 molecules of miR21 with the ability to operate within a wide linear range from 1 µM down to 500 aM. The fabricated GNF@Pt showed a remarkable conductivity compared with the gold nanoparticle-modified electrode. Addition of MB/barG boosted the electrochemical signal of the MB by almost 230 times. Moreover, a new protocol was introduced by the authors to increase the efficiency of microRNA extraction from the total serum. Possessing a sound selectivity and specificity towards single base-pair mutations, the developed biosensor could profile cancer development stages of two patient serums.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Nanopartículas Metálicas/química , MicroRNAs/sangue , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Humanos , Limite de Detecção , Hibridização de Ácido Nucleico
15.
Bioelectrochemistry ; 128: 165-174, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31004910

RESUMO

Most clinical tests for biomarker detection require the support of a laboratory, and the results are usually slow, less sensitive, and lack the possibility for Point-of-Care (PoC) testing. Further, with the increasing demand for sensitive, portable, rapid, and low-cost devices for clinical PoC applications, innovative methods are crucial. Thus, we report on utilizing nanostructured gold-platinum (Au-Pt) hybrid electrodes as a PoC device for highly sensitive and selective PTH detection in human serum samples. The method employs the immobilization of 3-mercaptopropionic acid to Au and subsequent activation of the carboxyl groups to enable anti-PTH antibody immobilization. Serum PTH was detected by monitoring the changes in electrochemical properties (ΔRct and Δi) of the sensor using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) against a standard hexacyanoferrate (II/III) probe. Changes in relative response percentage (RR%) in electrochemical properties due to increased PTH concentrations in serum were observed with EIS and DPV. The biosensor exhibited a low detection limit of 0.36 pg.mL-1 (EIS) and 0.59 pg.mL-1 (DPV) in serum with a linear range of 1 to 100,000 pg.mL-1. Further, to validate the accuracy of the proposed method, clinical samples (n = 20) were examined using the EIS method and compared to an established commercial test.


Assuntos
Eletrodos , Ouro/química , Nanoestruturas , Hormônio Paratireóideo/sangue , Platina/química , Estudos de Casos e Controles , Espectroscopia Dielétrica , Ensaio de Imunoadsorção Enzimática , Humanos , Hiperparatireoidismo/sangue , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...