Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(17): 19712-19722, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708207

RESUMO

The utilization of biobased feedstocks to prepare useful compounds is a pivotal trend in current chemical research. Among a varied portfolio of naturally available starting materials, fatty acids are abundant, versatile substrates with multiple applications. In this context, the ethenolysis of unsaturated fatty acid esters such as methyl oleate is an atom-economical way to prepare functional C10 olefins with a biobased footprint. Despite the existence of a variety of metathesis catalysts for the latter process, there is a lack of readily available, efficient, and inexpensive catalytic systems based on earth-abundant metals (Mo, W) whose preparation does not require sophisticated syntheses and manipulations. Here, a systematic exploration of homogeneous and heterogeneous inorganic Mo, W (oxy)halides shows that MoOCl4, while inactive as a homogeneous species, forms active and selective silica-supported ethenolysis precatalysts able to reach equilibrium conversion of methyl oleate within a few minutes upon activation with SnMe4. Such heterogeneous MoOCl4-based precatalysts were easily accessed through mechanochemical solvent-free procedures and found to contain, upon characterization by elemental analysis and Raman spectroscopy, isolated (≡SiO)Mo(=O)Cl3 units or polymeric silica-supported [-O(≡SiO)nMoCl4-nO-]m (n = 1, 2) complexes depending on the molybdenum loading. The former isolated species exhibited a higher catalytic performance. The developed heterogeneous precatalysts could be applied to the ethenolysis of various substrates, including polyunsaturated fatty acid esters and industrial fatty acid methyl ester (FAME) mixtures from palm oil transesterification.

2.
ACS Appl Mater Interfaces ; 15(48): 55885-55894, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991323

RESUMO

Atomically dispersed cerium catalysts on an inert, crystalline MgO powder support were prepared by using both Ce(III) and Ce(IV) precursors. The materials were used as catalysts for CO oxidation in a once-through flow reactor and characterized by atomic-resolution scanning transmission electron microscopy, X-ray absorption near-edge structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction, among other techniques, before and after catalysis. The most active catalysts, formed from the precursor incorporating Ce(III), displayed performance similar to that reported for bulk ceria under comparable conditions. The catalyst provided stable time-on-stream performance for as long as it was kept on-stream, 2 days, increasing slightly in activity as the atomically dispersed cerium ions were transformed into ceria nanodomains represented as CeOx and having increased reducibility on the MgO support. The results suggest how highly dispersed supported ceria catalysts with low cerium loadings can be prepared and may pave the way for improved efficiencies of cerium utilization in oxidation catalysis.

3.
ChemSusChem ; 15(17): e202200765, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726476

RESUMO

Glycerol carbonate (GC) has emerged as an attractive synthetic target due to various promising technological applications. Among several viable strategies to produce GC from CO2 and glycerol and its derivatives, the cycloaddition of CO2 to glycidol represents an atom-economic an efficient strategy that can proceed via a halide-free manifold through a proton-shuttling mechanism. Here, it was shown that the synthesis of GC can be promoted by bio-based and readily available organic salts leading to quantitative GC formation under atmospheric CO2 pressure and moderate temperatures. Comparative and mechanistic experiments using sodium citrate as the most efficient catalyst highlighted the role of both hydrogen bond donor and weakly basic sites in the organic salt towards GC formation. The citrate salt was also used as a catalyst for the conversion of other epoxy alcohols. Importantly, the discovery that homogeneous organic salts catalyze the target reaction inspired us to use metal alginates as heterogeneous and recoverable bio-based catalysts for the same process.


Assuntos
Dióxido de Carbono , Glicerol , Dióxido de Carbono/química , Carbonatos/química , Compostos de Epóxi , Halogênios , Propanóis , Sais
4.
ACS Omega ; 7(8): 6616-6626, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252657

RESUMO

Undoped and Nb-doped TiO2 nanocrystals are prepared by a microwave-assisted non-aqueous sol-gel method based on a slow alkyl chloride elimination reaction between metal chlorides and benzyl alcohol. Sub-4 nm nanoparticles are grown under microwave irradiation at 80 °C in only 3 h with precise control of growth parameters and yield. The obtained nanocrystals could be conveniently used to cast compact TiO2 or Nb-doped TiO2 electron transport layers for application in formamidinium lead iodide-based photovoltaic devices. Niobium doping is found to improve the cell performance by increasing the conductivity and mobility of the electron transport layer. At the same time, a measurable decrease in parasitic light absorption in the low wavelength portion of the spectrum was observed.

5.
Data Brief ; 37: 107190, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34150962

RESUMO

The cycloaddition of CO2 to epoxides under mild conditions is a growing field of research and a viable strategy to recycle CO2 in the form of cyclic carbonates as useful intermediates, solvents, and additives. This target requires readily accessible and recyclable catalysts whose synthesis does not involve expensive monomers, multistep procedures, coupling reagents, etc. Additionally, the catalysts should be active under atmospheric pressure and tolerate impurities such as methane and H2S. In a recent manuscript (Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates; Chemical Engineering Journal 422 (2021) 129930) we have developed strategies to prepare efficient heterogeneous catalysts for the cycloaddition reaction of CO2 to epoxides. Such materials consist of dispersions of metal halides (ZnCl2 or SnCl4) on silica support that is further functionalized with ionic liquids bearing nucleophilic halide moieties for cooperative epoxide activation and ring-opening. Herein, we provide useful complementary data for the characterization of the prepared materials in the form of: SEM images of materials (SEM: scanning electron microscope), SEM-EDS images of materials (EDS: Energy-dispersive X-ray spectroscopy), TEM images of materials (TEM: transmission electron microscope); XPS (X-ray photoelectron spectroscopy) survey spectra of most active catalysts and related high-resolution spectra in spectral regions of interest, BET (Brunauer-Emmett-Teller) physisorption isotherms of materials, raw 1H NMR spectra of catalytic reactions to verify the reproducibility of the reaction outcome and identify the reaction products.

6.
Nanotechnology ; 29(38): 385603, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29949522

RESUMO

Ultra-small and monodispersed zinc sulfide nanocrystals (NCs) (d ≤ 3 nm) have been prepared without the use of any surfactants by a synthetic route using benzyl mercaptan as a source of sulfur. The prepared NCs are dispersible in highly polar solvents and display the capability to closely pack-up in a bulky film. The NCs were characterized by TEM, XRD and UV-vis optical absorption as well as by steady-state and time-resolved photoluminescence (PL) spectroscopies. Uniform films of ZnS were spin-coated on glass and ITO-glass substrates using a NCs dispersion in N,N-dimethylformamide. The NCs and the resulting films were characterized by morphological and optoelectronic probing techniques such as AFM, SEM, diffuse reflectance, PL and photoelectron spectroscopy in air. These physical investigations confirmed that the chalcogenide NCs grown by this method have the potential to be utilized directly as photocatalysts and are potentially useful building-blocks/starting materials for the fabrication of semiconductor thin films for optoelectronic applications such as LED, luminescent screens, field effect transistor and solar cells. Insights on the chemistry involved in the NCs growth have been provided revealing that their formation proceeds through a mechanism involving a thioether elimination reaction.

7.
ACS Appl Mater Interfaces ; 9(13): 11828-11836, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28177212

RESUMO

Chemical bath deposition (CBD) of tin oxide (SnO2) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO2 (a-SnO2) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO2) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO2/methylammonium lead iodide (MAPbI3)/2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO2/MAPbI3 interface, while the deep valence band of SnO2 ensures strong hole-blocking properties. Despite exhibiting very low electron mobility, the excellent interfacial energetics combined with high transparency (Egap,optical > 4 eV) and uniform substrate coverage make the a-SnO2 ETL prepared by CBD an excellent candidate for the potentially low-cost and large-scale fabrication of organohalide lead perovskite and organic photovoltaics.

8.
Adv Mater ; 27(45): 7445-50, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26460732

RESUMO

A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector.

9.
J Am Chem Soc ; 137(37): 11970-5, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26104755

RESUMO

The bottom-up assembly of nanoparticles into diverse ordered solids is a challenge because it requires nanoparticles, which are often quasi-spherical, to have interaction anisotropy akin to atoms and molecules. Typically, anisotropy has been introduced by changing the shape of the inorganic nanoparticle core. Here, we present the design, self-assembly, optical properties, and total structural determination of Ag29(BDT)12(TPP)4, an atomically precise tetravalent nanocluster (NC) (BDT, 1,3-benzenedithiol; TPP, triphenylphosphine). It features four unique tetrahedrally symmetrical binding surface sites facilitated by the supramolecular assembly of 12 BDT (wide footprint bidentate thiols) in the ligand shell. When each of these sites was selectively functionalized by a single phosphine ligand, particle stability, synthetic yield, and the propensity to self-assemble into macroscopic crystals increased. The solid crystallized NCs have a substantially narrowed optical band gap compared to that of the solution state, suggesting strong interparticle electronic coupling occurs in the solid state.

10.
Phys Chem Chem Phys ; 17(2): 1001-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25410936

RESUMO

Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

11.
ChemSusChem ; 7(9): 2575-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25138439

RESUMO

A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials.


Assuntos
Hidrogênio/química , Níquel/química , Paládio/química , Processos Fotoquímicos , Sulfetos/química , Catálise , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
12.
Beilstein J Nanotechnol ; 3: 360-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23016140

RESUMO

We have taken advantage of the native surface roughness and the iron content of AISI-316 stainless steel to grow multiwalled carbon nanotubes (MWCNTs) by chemical vapour deposition without the addition of an external catalyst. The structural and electronic properties of the synthesized carbon nanostructures have been investigated by a range of electron microscopy and spectroscopy techniques. The results show the good quality and the high graphitization degree of the synthesized MWCNTs. Through energy-loss spectroscopy we found that the electronic properties of these nanostructures are markedly different from those of highly oriented pyrolytic graphite (HOPG). Notably, a broadening of the π-plasmon peak in the case of MWCNTs is evident. In addition, a photocurrent was measured when MWCNTs were airbrushed onto a silicon substrate. External quantum efficiency (EQE) and photocurrent values were reported both in planar and in top-down geometry of the device. Marked differences in the line shapes and intensities were found for the two configurations, suggesting that two different mechanisms of photocurrent generation and charge collection are in operation. From this comparison, we are able to conclude that the silicon substrate plays an important role in the production of electron-hole pairs.

13.
Nanotechnology ; 22(11): 115701, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21297234

RESUMO

We report on a significant photocurrent generation from a planar device obtained by coating a bare n doped silicon substrate with a random network of multiwall carbon nanotubes (MWCNTs). This MWCNT/n-Si hybrid device exhibits an incident photon to current efficiency reaching up to 34% at 670 nm. We also show that MWCNTs covering a quartz substrate still exhibit photocurrent, though well below than that of the MWCNTs coating the silicon substrate. These results suggest that MWCNTs are able to generate photocurrent and that the silicon substrate plays a fundamental role in our planar device. The former effect is particularly interesting because MWCNTs are generally known to mimic the electronic properties of graphite, which does not present any photocurrent generation. On the basis of theoretical calculations revealing a weak metallic character for MWCNTs, we suggest that both metallic and semiconducting nanotubes are able to generate e-h pairs upon illumination. This can be ascribed to the presence of van Hove singularities in the density of states of each single wall carbon nanotube constituting the MWCNT and to the low density of electrons at the Fermi level. Finally, we suggest that though both MWCNTs and Si substrate are involved in the photocurrent generation process, MWCNT film mainly acts as a semitransparent electrode in our silicon-based device.

14.
J Nanosci Nanotechnol ; 11(10): 9227-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400328

RESUMO

We report on the generation of photocurrent in the visible and ultraviolet range from planar devices built from the Ge nanocrystals grown on a heavy n-doped Si(001) substrate covered with 5 nm thick thermally grown SiO2. These Ge nanostructures/SiO2/n(+)-Si devices are shown to generate photocurrent with an Incident-Photon-to-electron Conversion Efficiency (IPCE) spectral range depending on the Ge nanocrystals size. The increase of the IPCE value of our devices in the 350-600 nm range correlates well with the absorbance of Ge.

15.
Biochim Biophys Acta ; 1787(7): 897-904, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19344690

RESUMO

We have studied the mitochondrial permeability transition pore (PTP) under oxidizing conditions with mitochondria-bound hematoporphyrin, which generates reactive oxygen species (mainly singlet oxygen, (1)O(2)) upon UV/visible light-irradiation and promotes the photooxidative modification of vicinal targets. We have characterized the PTP-modulating properties of two major critical sites endowed with different degrees of photosensitivity: (i) the most photovulnerable site comprises critical histidines, whose photomodification by vicinal hematoporphyrin causes a drop in reactivity of matrix-exposed (internal), PTP-regulating cysteines thus stabilizing the pore in a closed conformation; (ii) the most photoresistant site coincides with the binding domains of (external) cysteines sensitive to membrane-impermeant reagents, which are easily unmasked when oxidation of internal cysteines is prevented. Photooxidation of external cysteines promoted by vicinal hematoporphyrin reactivates the PTP after the block caused by histidine photodegradation. Thus, hematoporphyrin-mediated photooxidative stress can either inhibit or activate the mitochondrial permeability transition depending on the site of hematoporphyrin localization and on the nature of the substrate; and selective photomodification of different hematoporphyrin-containing pore domains can be achieved by fine regulation of the sensitizer/light doses. These findings shed new light on PTP modulation by oxidative stress.


Assuntos
Hematoporfirinas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Estresse Oxidativo , Compostos de Sulfidrila/metabolismo , Animais , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Peróxido de Hidrogênio/farmacologia , Luz , Mitocôndrias Hepáticas/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , Oxidantes/farmacologia , Oxirredução , Permeabilidade , Fotoquímica , Ratos , Ratos Wistar , Oxigênio Singlete/metabolismo , Fatores de Tempo , Raios Ultravioleta
16.
Int J Biochem Cell Biol ; 37(9): 1858-68, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15878839

RESUMO

It is well known that a lag phase generally elapses between the addition of inducers of the mitochondrial permeability transition and the opening of the pore. To advance our present understanding as regards the significance of this phenomenon, we used experimental approaches which are sensitive to different aspects of the permeability transition process. The pore conformation was sensed by the fluorescence anisotropy changes of hematoporphyrin-labelled mitochondria. Membrane permeabilization was ascertained by following the matrix swelling consequent to external solute equilibration. We show that the anisotropy changes of mitochondria-bound hematoporphyrin precede both membrane depolarization (proton permeation) and matrix swelling (solute permeation), thus sensing a step of the permeability transition process that involves the pore in its closed state. We suggest that the opening of the pore is preceded by a structural remodelling of mitochondrial domains containing hematoporphyrin-near, pore-regulating histidines. Such a perturbation is strongly inhibited at acidic matrix pH and completely blocked by cyclosporin A. In sucrose-based media the opening of the pore can be strongly delayed, as compared to salt-based media, a fact which probably reflects perturbation of mitochondrial membranes by sugar. We conclude that the mitochondrial permeability transition could be described as an at least two-step process which is mainly regulated by conformational changes of the pore components.


Assuntos
Membranas Intracelulares/química , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/metabolismo , Animais , Cálcio/metabolismo , Ciclosporina/farmacologia , Polarização de Fluorescência , Hematoporfirinas/química , Hematoporfirinas/metabolismo , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Imunossupressores/farmacologia , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Cinética , Potenciais da Membrana , Mitocôndrias Hepáticas/efeitos dos fármacos , Dilatação Mitocondrial , Permeabilidade , Conformação Proteica , Ratos , Ratos Wistar , Sacarose/farmacologia
17.
Int J Biochem Cell Biol ; 37(2): 306-19, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15474977

RESUMO

In this paper we present a study on the intracellular localisation and the efficiency of cell photoinactivation of a series of derivatives of 5,10,15,20-tetrakis-(4-N-methylpyridyl)-porphine (C1), whose degree of lipophilicity was varied through replacement of one methyl group with an alkyl chain of various length. Human HT1080 fibrosarcoma cells exposed to the various C1 derivatives (0.25 microM) for 24 h and irradiated with increasing doses of red-light (0.45-27 J/cm2) were inactivated with different efficiencies. The efficiency of cell photoinactivation increased with the increasing length of the hydrocarbon tail and lipophilicity and correlated with the efficiency of the porphyrin accumulation into the cells. Despite the presence of positive charges, these porphyrins did localise rather selectively in lysosomes while mitochondrial localisation was not evident, as demonstrated by fluorescence microscopy studies. Studies on isolated mitochondria provided evidence that the porphyrin uptake and distribution in these organelles were not modulated by the transmembrane potential but were exclusively controlled by partitioning phenomena which might have prevented mitochondria localization in whole cells. Our findings demonstrated that these porphyrins entered the cells through the endocytotic pathway and were transported to lysosomes whose pH increased rapidly upon irradiation. Lysosomal damage did not cause any intracellular redistribution of the porphyrin and represented the primary event causing cell death, very likely via necrosis.


Assuntos
Sistemas de Liberação de Medicamentos , Fibrossarcoma/metabolismo , Lisossomos/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Cátions/química , Cátions/metabolismo , Cátions/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Linhagem Celular Tumoral , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/patologia , Fibrossarcoma/radioterapia , Humanos , Hidrocarbonetos/química , Lisossomos/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia
18.
Arch Biochem Biophys ; 410(1): 155-60, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12559988

RESUMO

Mitochondrial resealing after the opening of the permeability transition (PT) pore was studied in saline- and sugar-based media by following the fluorescence anisotropy changes of mitochondria-bound hematoporphyrin (HP), a probe sensitive to conformational variations of the pore complex [Biochemistry 38 (1999) 9300]. The HP anisotropy changes correlated well with complete mitochondrial resealing in saline media and suggested that the pore complex regained the native structure after closure. Rebuilding of the pore complex structure was also achieved in monosaccharide-based media, thus ruling out a major influence of the swollen state of mitochondria on the reconstitution properties of the pore components. On the contrary, when sucrose or other disaccharides were used as osmotic support, restoration of the native mitochondrial structure, as monitored by HP anisotropy, was not achieved, though the proton barrier of the inner membrane and respiration functions were reestablished. Infrared spectroscopy experiments indicated the occurrence of strong perturbations of the mitochondrial membrane structure after disaccharide entrapment in the matrix space. These data suggest that mitochondria are able to reseal and regain functional activity after opening of the PT pore irrespective of the incubation medium but in sucrose (and other disaccharides) the pore complex adopts a conformation different from that existing before permeabilization. In general, our data indicate that the pore complex can exist in different conformations which are modulated by the nature of the interactions with the medium cosolvents.


Assuntos
Dissacarídeos/farmacologia , Membranas Intracelulares/química , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/metabolismo , Animais , Meios de Cultura , Dissacarídeos/química , Dissacarídeos/metabolismo , Polarização de Fluorescência , Hematoporfirinas/química , Hematoporfirinas/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Permeabilidade , Ratos , Ratos Wistar , Espectrofotometria Infravermelho , Sacarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...