Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 37: 107190, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34150962

RESUMO

The cycloaddition of CO2 to epoxides under mild conditions is a growing field of research and a viable strategy to recycle CO2 in the form of cyclic carbonates as useful intermediates, solvents, and additives. This target requires readily accessible and recyclable catalysts whose synthesis does not involve expensive monomers, multistep procedures, coupling reagents, etc. Additionally, the catalysts should be active under atmospheric pressure and tolerate impurities such as methane and H2S. In a recent manuscript (Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates; Chemical Engineering Journal 422 (2021) 129930) we have developed strategies to prepare efficient heterogeneous catalysts for the cycloaddition reaction of CO2 to epoxides. Such materials consist of dispersions of metal halides (ZnCl2 or SnCl4) on silica support that is further functionalized with ionic liquids bearing nucleophilic halide moieties for cooperative epoxide activation and ring-opening. Herein, we provide useful complementary data for the characterization of the prepared materials in the form of: SEM images of materials (SEM: scanning electron microscope), SEM-EDS images of materials (EDS: Energy-dispersive X-ray spectroscopy), TEM images of materials (TEM: transmission electron microscope); XPS (X-ray photoelectron spectroscopy) survey spectra of most active catalysts and related high-resolution spectra in spectral regions of interest, BET (Brunauer-Emmett-Teller) physisorption isotherms of materials, raw 1H NMR spectra of catalytic reactions to verify the reproducibility of the reaction outcome and identify the reaction products.

2.
Beilstein J Nanotechnol ; 3: 360-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23016140

RESUMO

We have taken advantage of the native surface roughness and the iron content of AISI-316 stainless steel to grow multiwalled carbon nanotubes (MWCNTs) by chemical vapour deposition without the addition of an external catalyst. The structural and electronic properties of the synthesized carbon nanostructures have been investigated by a range of electron microscopy and spectroscopy techniques. The results show the good quality and the high graphitization degree of the synthesized MWCNTs. Through energy-loss spectroscopy we found that the electronic properties of these nanostructures are markedly different from those of highly oriented pyrolytic graphite (HOPG). Notably, a broadening of the π-plasmon peak in the case of MWCNTs is evident. In addition, a photocurrent was measured when MWCNTs were airbrushed onto a silicon substrate. External quantum efficiency (EQE) and photocurrent values were reported both in planar and in top-down geometry of the device. Marked differences in the line shapes and intensities were found for the two configurations, suggesting that two different mechanisms of photocurrent generation and charge collection are in operation. From this comparison, we are able to conclude that the silicon substrate plays an important role in the production of electron-hole pairs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...