Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555673

RESUMO

Prostate cancer is a major public health concern and one of the most prevalent forms of cancer worldwide. The definition of altered signaling pathways implicated in this complex disease is thus essential. In this context, abnormal expression of the receptor of Macrophage Colony-Stimulating Factor-1 (M-CSF or CSF-1) has been described in prostate cancer cells. Yet, outcomes of this expression remain unknown. Using mouse and human prostate cancer cell lines, this study has investigated the functionality of the wild-type CSF-1 receptor in prostate tumor cells and identified molecular mechanisms underlying its ligand-induced activation. Here, we showed that upon CSF-1 binding, the receptor autophosphorylates and activates multiple signaling pathways in prostate tumor cells. Biological experiments demonstrated that the CSF-1R/CSF-1 axis conferred significant advantages in cell growth and cell invasion in vitro. Mouse xenograft experiments showed that CSF-1R expression promoted the aggressiveness of prostate tumor cells. In particular, we demonstrated that the ligand-activated CSF-1R increased the expression of spp1 transcript encoding for osteopontin, a key player in cancer development and metastasis. Therefore, this study highlights that the CSF-1 receptor is fully functional in a prostate cancer cell and may be a potential therapeutic target for the treatment of prostate cancer.


Assuntos
Osteopontina , Neoplasias da Próstata , Receptor de Fator Estimulador de Colônias de Macrófagos , Animais , Humanos , Masculino , Camundongos , Ligantes , Fator Estimulador de Colônias de Macrófagos/metabolismo , Osteopontina/genética , Neoplasias da Próstata/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
2.
Int Endod J ; 55 Suppl 1: 14-36, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35034368

RESUMO

Pulpitis is the inflammatory response of the dental pulp to a tooth insult, whether it is microbial, chemical, or physical in origin. It is traditionally referred to as reversible or irreversible, a classification for therapeutic purposes that determines the capability of the pulp to heal. Recently, new knowledge about dental pulp physiopathology led to orientate therapeutics towards more frequent preservation of pulp vitality. However, full adoption of these vital pulp therapies by dental practitioners will be achieved only following better understanding of cell and tissue mechanisms involved in pulpitis. The current narrative review aimed to discuss the contribution of the most significant experimental models developed to study pulpitis. Traditionally, in vitro two (2D)- or three (3D)-dimensional cell cultures or in vivo animal models were used to analyse the pulp response to pulpitis inducers at cell, tissue or organ level. In vitro, 2D cell cultures were mainly used to decipher the specific roles of key actors of pulp inflammation such as bacterial by-products, pro-inflammatory cytokines, odontoblasts or pulp stem cells. However, these simple models did not reproduce the 3D organisation of the pulp tissue and, with rare exceptions, did not consider interactions between resident cell types. In vitro, tissue/organ-based models were developed to better reflect the complexity of the pulp structure. Their major disadvantage is that they did not allow the analysis of blood supply and innervation participation. On the contrary, in vivo models have allowed researchers to identify key immune, vascular and nervous actors of pulpitis and to understand their function and interplay in the inflamed pulp. However, inflammation was mainly induced by iatrogenic dentine drilling associated with simple pulp exposure to the oral environment or stimulation by individual bacterial by-products for short periods. Clearly, these models did not reflect the long and progressive development of dental caries. Lastly, the substantial diversity of the existing models makes experimental data extrapolation to the clinical situation complicated. Therefore, improvement in the design and standardisation of future models, for example by using novel molecular biomarkers, databased models and artificial intelligence, will be an essential step in building an incremental knowledge of pulpitis in the future.


Assuntos
Cárie Dentária , Pulpite , Animais , Inteligência Artificial , Cárie Dentária/microbiologia , Polpa Dentária/patologia , Odontólogos , Humanos , Modelos Teóricos , Papel Profissional , Pulpite/terapia
3.
Blood ; 130(26): 2860-2871, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29138221

RESUMO

The BCR-ABL specific tyrosine kinase inhibitors (TKI) changed the outcome of chronic myeloid leukemia (CML), turning a life-threatening disease into a chronic illness. However, TKI are not yet curative, because most patients retain leukemic stem cells (LSC) and their progenitors in bone marrow and relapse following treatment cessation. At diagnosis, deregulation of the bone morphogenetic protein (BMP) pathway is involved in LSC and progenitor expansion. Here, we report that BMP pathway alterations persist in TKI-resistant patients. In comparison with patients in complete cytogenetic remission, TKI-resistant LSC and progenitors display high levels of BMPR1b expression and alterations of its cellular localization. In vitro treatment of immature chronic phase CML cells with TKI alone, or in combination with interferon-α, results in the preferential survival of BMPR1b+ cells. We demonstrated persistent and increasing BMP4 production by patients' mesenchymal cells with resistance. Patient follow-up revealed an increase of BMPR1b expression and in BMP4 expression in LSC from TKI-resistant patients in comparison with diagnosis, while remaining unchanged in sensitive patients. Both leukemic and nonleukemic cells exhibit higher BMP4 levels in the bone marrow of TKI-resistant patients. Exposure to BMP2/BMP4 does not alter BCR-ABL transcript expression but is accompanied by the overexpression of TWIST-1, a transcription factor highly expressed in resistant LSC. By modulating BMP4 or BMPR1b expression, we show that these elements are involved in TKI resistance. In summary, we reveal that persistence of BMP alterations and existence of an autocrine loop promote CML-primitive cells' TKI resistance.


Assuntos
Comunicação Autócrina , Proteínas Morfogenéticas Ósseas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Morfogenética Óssea 4/análise , Proteína Morfogenética Óssea 4/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/análise , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/análise , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteína 1 Relacionada a Twist/análise , Proteína 1 Relacionada a Twist/metabolismo
4.
Stem Cell Investig ; 4: 67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815178

RESUMO

Stem cells (SCs) have been extensively studied in the context of regenerative medicine. Human hematopoietic stem cell (HSC)-based therapies have been applied to treat leukemic patients for decades. Handling of mesenchymal stem cells (MSCs) has also raised hopes and concerns in the field of tissue engineering. Lately, discovery of cell reprogramming by Yamanaka's team has profoundly modified research strategies and approaches in this domain. As we gain further insight into cell fate mechanisms and identification of key actors and parameters, this also raises issues as to the manipulation of SCs. These include the engraftment of manipulated cells and the potential predisposition of those cells to develop cancer. As a unique and pioneer model, the use of HSCs to provide new perspectives in the field of regenerative and curative medicine will be reviewed. We will also discuss the potential use of various SCs from embryonic to adult stem cells (ASCs), including induced pluripotent stem cells (iPSCs) as well as MSCs. Furthermore, to sensitize clinicians and researchers to unresolved issues in these new therapeutic approaches, we will highlight the risks associated with the manipulation of human SCs from embryonic or adult origins for each strategy presented.

5.
J Leukoc Biol ; 99(2): 311-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26336156

RESUMO

M-CSF and G-CSF are instructive cytokines that specifically induce differentiation of bipotent myeloid progenitors into macrophages and granulocytes, respectively. Through morphology and colony assay studies, flow cytometry analysis of specific markers, and expression of myeloid transcription factors, we show here that the Eger/Fms cell line is composed of cells whose differentiation fate is instructed by M-CSF and G-CSF, thus representing a good in vitro model of myeloid bipotent progenitors. Consistent with the essential role of ERK1/2 during macrophage differentiation and defects of macrophagic differentiation in native ERK1(-/-) progenitors, ERK signaling is strongly activated in Eger/Fms cells upon M-CSF-induced macrophagic differentiation but only to a very small extent during G-CSF-induced granulocytic differentiation. Previous in vivo studies indicated a key role of Fli-1 in myeloid differentiation and demonstrated its weak expression during macrophagic differentiation with a strong expression during granulocytic differentiation. Here, we demonstrated that this effect could be mediated by a differential regulation of protein kinase Cδ (PKCd) on Fli-1 expression in response to M-CSF and G-CSF. With the use of knockdown of PKCd by small interfering RNA, we demonstrated that M-CSF activates PKCd, which in turn, inhibits Fli-1 expression and granulocytic differentiation. Finally, we studied the connection between ERK and PKCd and showed that in the presence of the MEK inhibitor U0126, PKCd expression is decreased, and Fli-1 expression is increased in response to M-CSF. Altogether, we demonstrated that in bipotent myeloid cells, M-CSF promotes macrophagic over granulocytic differentiation by inducing ERK activation but also PKCd expression, which in turn, down-regulates Fli-1 expression and prevents granulocytic differentiation.


Assuntos
Granulócitos/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Animais , Butadienos/farmacologia , Linhagem Celular , Ensaio de Unidades Formadoras de Colônias , Ativação Enzimática/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/deficiência , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Mielopoese/fisiologia , Nitrilas/farmacologia , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/fisiologia , Proteína Proto-Oncogênica c-fli-1/biossíntese , Proteína Proto-Oncogênica c-fli-1/genética , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...