Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 795680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178397

RESUMO

GATA transcription factors play crucial roles in various developmental processes in organisms ranging from flies to humans. In mammals, GATA factors are characterized by the presence of two highly conserved domains, the N-terminal (N-ZnF) and the C-terminal (C-ZnF) zinc fingers. The Drosophila GATA factor Serpent (Srp) is produced in different isoforms that contains either both N-ZnF and C-ZnF (SrpNC) or only the C-ZnF (SrpC). Here, we investigated the functional roles ensured by each of these isoforms during Drosophila development. Using the CRISPR/Cas9 technique, we generated new mutant fly lines deleted for one (ΔsrpNC) or the other (ΔsrpC) encoded isoform, and a third one with a single point mutation in the N-ZnF that alters its interaction with its cofactor, the Drosophila FOG homolog U-shaped (Ush). Analysis of these mutants revealed that the Srp zinc fingers are differentially required for Srp to fulfill its functions. While SrpC is essential for embryo to adult viability, SrpNC, which is the closest conserved isoform to that of vertebrates, is not. However, to ensure its specific functions in larval hematopoiesis and fertility, Srp requires the presence of both N- and C-ZnF (SrpNC) and interaction with its cofactor Ush. Our results also reveal that in vivo the presence of N-ZnF restricts rather than extends the ability of GATA factors to regulate the repertoire of C-ZnF bound target genes.

2.
Mol Cell Biol ; 39(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670567

RESUMO

DNA-bound transcription factors (TFs) governing developmental gene regulation have been proposed to recruit polymerase II machinery at gene promoters through specific interactions with dedicated subunits of the evolutionarily conserved Mediator (MED) complex. However, whether such MED subunit-specific functions and partnerships have been conserved during evolution has been poorly investigated. To address this issue, we generated the first Drosophila melanogaster loss-of-function mutants for Med1, known as a specific cofactor for GATA TFs and hormone nuclear receptors in mammals. We show that Med1 is required for cell proliferation and hematopoietic differentiation depending on the GATA TF Serpent (Srp). Med1 physically binds Srp in cultured cells and in vitro through its conserved GATA zinc finger DNA-binding domain and the divergent Med1 C terminus. Interestingly, GATA-Srp interaction occurs through the longest Med1 isoform, suggesting a functional diversity of MED complex populations. Furthermore, we show that Med1 acts as a coactivator for the GATA factor Pannier during thoracic development. In conclusion, the Med1 requirement for GATA-dependent regulatory processes is a common feature in insects and mammals, although binding interfaces have diverged. Further work in Drosophila should bring valuable insights to fully understand GATA-MED functional partnerships, which probably involve other MED subunits depending on the cellular context.


Assuntos
Subunidade 1 do Complexo Mediador/metabolismo , Complexo Mediador/metabolismo , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fatores de Transcrição GATA/metabolismo , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação com Perda de Função , Subunidade 1 do Complexo Mediador/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo
3.
PLoS Genet ; 13(7): e1006932, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742844

RESUMO

A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF's mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP40/genética , Hematopoese/genética , Receptores Notch/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Proteômica , Receptores Notch/biossíntese , Transdução de Sinais/genética
4.
Transcription ; 3(5): 250-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22885977

RESUMO

Even though deregulation of human MLF1, the founding member of the Myeloid Leukemia Factor family, has been associated with acute myeloid leukemia, the function and mode of action of this family of genes have remained rather mysterious. Yet, recent findings in Drosophila shed new light on their biological activity and suggest that they play an important role in hematopoiesis and leukemia, notably by regulating the stability of RUNX transcription factors, another family of conserved proteins with prominent roles in normal and malignant blood cell development.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Hematopoese/fisiologia , Leucemia Mieloide/metabolismo , Proteínas/metabolismo , Animais , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Proteínas de Drosophila/metabolismo , Humanos
5.
Proc Natl Acad Sci U S A ; 109(13): 4986-91, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22411814

RESUMO

Defining the function of the genes that, like RUNX1, are deregulated in blood cell malignancies represents an important challenge. Myeloid leukemia factors (MLFs) constitute a poorly characterized family of conserved proteins whose founding member, MLF1, has been associated with acute myeloid leukemia in humans. To gain insight into the functions of this family, we investigated the role of the Drosophila MLF homolog during blood cell development. Here we report that mlf controls the homeostasis of the Drosophila hematopoietic system. Notably, mlf participates in a positive feedback loop to fine tune the activity of the RUNX transcription factor Lozenge (LZ) during development of the crystal cells, one of the two main blood cell lineages in Drosophila. At the molecular level, our data in cell cultures and in vivo strongly suggest that MLF controls the number of crystal cells by protecting LZ from degradation. Remarkably, it appears that the human MLF1 protein can substitute for MLF in the crystal cell lineage. In addition, MLF stabilizes the human oncogenic fusion protein RUNX1-ETO and is required for RUNX1-ETO-induced blood cell disorders in a Drosophila model of leukemia. Finally, using the human leukemic blood cell line Kasumi-1, we show that MLF1 depletion impairs RUNX1-ETO accumulation and reduces RUNX1-ETO-dependent proliferation. Thus, we propose that the regulation of RUNX protein levels is a conserved feature of MLF family members that could be critical for normal and pathological blood cell development.


Assuntos
Sequência Conservada/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Hematopoese , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Humanos , Larva/citologia , Larva/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fenótipo , Estabilidade Proteica , Proteólise , Ativação Transcricional/genética
6.
Prog Mol Biol Transl Sci ; 100: 51-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21377624

RESUMO

The basic cellular processes deregulated during carcinogenesis and the vast majority of the genes implicated in cancer appear conserved from humans to flies. This conservation, together with an ever-expanding fly genetic toolbox, has made of Drosophila melanogaster a remarkably profitable model to study many fundamental aspects of carcinogenesis. In particular, Drosophila has played a major role in the identification of genes and pathways implicated in cancer and in disclosing novel functional relationships between cancer genes. It has also proved to be a genetically tractable system where to mimic cancer-like situations and characterize the mode of action of human oncogenes. Here, we outline some advances in the study of cancer, both at the basic and more translational levels, which have benefited from research carried out in flies.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/fisiologia , Neoplasias/patologia , Animais , Diferenciação Celular , Polaridade Celular , Proliferação de Células
7.
Int J Dev Biol ; 54(6-7): 1107-15, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20711988

RESUMO

Transcription factors play a key role in regulating blood cell fate choice and differentiation. In this review, we examine current knowledge of the function and mode of action of the transcription factors implicated in haematopoiesis in Drosophila. We particularly emphasize regulation by transcription factors and cofactors, such as GATA, FOG and RUNX, whose homologues in mammals also control blood cell formation and we discuss the cross talks between these transcriptional regulators at the different stages of haematopoietic cell fate decision.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Hematopoese/fisiologia , Fatores de Transcrição/fisiologia , Animais , Subunidades alfa de Fatores de Ligação ao Core/genética , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Fatores de Transcrição/genética
8.
BMC Dev Biol ; 10: 65, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20540764

RESUMO

BACKGROUND: In metazoans, the hematopoietic system plays a key role both in normal development and in defense of the organism. In Drosophila, the cellular immune response involves three types of blood cells: plasmatocytes, crystal cells and lamellocytes. This last cell type is barely present in healthy larvae, but its production is strongly induced upon wasp parasitization or in mutant contexts affecting larval blood cell homeostasis. Notably, several zygotic mutations leading to melanotic mass (or "tumor") formation in larvae have been associated to the deregulated differentiation of lamellocytes. To gain further insights into the gene regulatory network and the mechanisms controlling larval blood cell homeostasis, we conducted a tissue-specific loss of function screen using hemocyte-specific Gal4 drivers and UAS-dsRNA transgenic lines. RESULTS: By targeting around 10% of the Drosophila genes, this in vivo RNA interference screen allowed us to recover 59 melanotic tumor suppressor genes. In line with previous studies, we show that melanotic tumor formation is associated with the precocious differentiation of stem-cell like blood progenitors in the larval hematopoietic organ (the lymph gland) and the spurious differentiation of lamellocytes. We also find that melanotic tumor formation can be elicited by defects either in the fat body, the embryo-derived hemocytes or the lymph gland. In addition, we provide a definitive confirmation that lymph gland is not the only source of lamellocytes as embryo-derived plasmatocytes can differentiate into lamellocytes either upon wasp infection or upon loss of function of the Friend of GATA cofactor U-shaped. CONCLUSIONS: In this study, we identify 55 genes whose function had not been linked to blood cell development or function before in Drosophila. Moreover our analyses reveal an unanticipated plasticity of embryo-derived plasmatocytes, thereby shedding new light on blood cell lineage relationship, and pinpoint the Friend of GATA transcription cofactor U-shaped as a key regulator of the plasmatocyte to lamellocyte transformation.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Homeostase , Animais , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Genes Supressores de Tumor , Hematopoese , Hemócitos/citologia , Hemócitos/imunologia , Interferência de RNA
9.
Mol Cell Biol ; 30(11): 2837-48, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20368357

RESUMO

Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory "CDK8 module," composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição GATA/metabolismo , Complexo Mediador/metabolismo , Subunidades Proteicas/metabolismo , Interferência de RNA , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Quinase 8 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Hematopoese/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Complexo Mediador/genética , Mapeamento de Interação de Proteínas , Subunidades Proteicas/genética , Fatores de Transcrição/genética
11.
Proc Natl Acad Sci U S A ; 106(29): 12043-8, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19581587

RESUMO

The t(8:21)(q22;q22) translocation is 1 of the most common chromosomal abnormalities linked to acute myeloid leukemia (AML). AML1-ETO, the product of this translocation, fuses the N-terminal portion of the RUNX transcription factor AML1 (also known as RUNX1), including its DNA-binding domain, to the almost entire transcriptional corepressor ETO (also known as MTG8 or RUNX1T1). This fusion protein acts primarily by interfering with endogenous AML1 function during myeloid differentiation, although relatively few genes are known that participate with AML1-ETO during leukemia progression. Here, we assessed the consequences of expressing this chimera in Drosophila blood cells. Reminiscent of what is observed in AML, AML1-ETO specifically inhibited the differentiation of the blood cell lineage whose development depends on the RUNX factor Lozenge (LZ) and induced increased numbers of LZ(+) progenitors. Using an in vivo RNAi-based screen for suppressors of AML1-ETO, we identified calpainB as required for AML1-ETO-induced blood cell disorders in Drosophila. Remarkably, calpain inhibition triggered AML1-ETO degradation and impaired the clonogenic potential of the human t(8;21) leukemic blood cell line Kasumi-1. Therefore Drosophila provides a promising genetically tractable model to investigate the conserved basis of leukemogenesis and to open avenues in AML therapy.


Assuntos
Calpaína/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Animais , Células Sanguíneas/citologia , Calpaína/antagonistas & inibidores , Contagem de Células , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Genes Supressores , Testes Genéticos , Humanos , Modelos Animais , Proteína 1 Parceira de Translocação de RUNX1 , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
12.
Biogerontology ; 10(5): 613-25, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19067222

RESUMO

Flies were subjected to one of three mild stresses known to have positive effects on longevity (heat, hypergravity, cold), prior to an infection with the entomopathogenic fungus Beauveria bassiana. Flies subjected to cold survived longer to infection, while the other mild stresses had no positive effect. These positive effects of a cold stress on resistance to infection were observed mainly in males and throughout life, i.e., a long time after the cold stress was applied. It was confirmed that cold and hypergravity stresses increased longevity of non-infected flies, but no positive effect of heat shocks were however observed.


Assuntos
Temperatura Baixa , Drosophila melanogaster , Longevidade , Micoses/fisiopatologia , Estresse Fisiológico , Adaptação Fisiológica , Animais , Beauveria/patogenicidade , Comportamento Animal/fisiologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Feminino , Temperatura Alta , Hipergravidade , Masculino , Atividade Motora/fisiologia , Taxa de Sobrevida
14.
Cell ; 127(7): 1425-37, 2006 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-17190605

RESUMO

The Drosophila immune system discriminates between various types of infections and activates appropriate signal transduction pathways to combat the invading microorganisms. The Toll pathway is required for the host response against fungal and most Gram-positive bacterial infections. The sensing of Gram-positive bacteria is mediated by the pattern recognition receptors PGRP-SA and GNBP1 that cooperate to detect the presence of infections in the host. Here, we report that GNBP3 is a pattern recognition receptor that is required for the detection of fungal cell wall components. Strikingly, we find that there is a second, parallel pathway acting jointly with GNBP3. The Drosophila Persephone protease activates the Toll pathway when proteolytically matured by the secreted fungal virulence factor PR1. Thus, the detection of fungal infections in Drosophila relies both on the recognition of invariant microbial patterns and on monitoring the effects of virulence factors on the host.


Assuntos
Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/microbiologia , Glucanos/imunologia , Fatores de Virulência/imunologia , Animais , Formação de Anticorpos , Beauveria/imunologia , Beauveria/patogenicidade , Candida albicans/imunologia , Candida albicans/patogenicidade , Proteínas de Transporte/genética , Drosophila/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Imunidade Celular , Peptídeos e Proteínas de Sinalização Intracelular , Metarhizium/imunologia , Metarhizium/patogenicidade , Modelos Imunológicos , Polissacarídeos/química , Serina Endopeptidases/metabolismo , Transdução de Sinais
15.
Science ; 302(5653): 2126-30, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14684822

RESUMO

The Toll-dependent defense against Gram-positive bacterial infections in Drosophila is mediated through the peptidoglycan recognition protein SA (PGRP-SA). A mutation termed osiris disrupts the Gram-negative binding protein 1 (GNBP1) gene and leads to compromised survival of mutant flies after Gram-positive infections, but not after fungal or Gram-negative bacterial challenge. Our results demonstrate that GNBP1 and PGRP-SA can jointly activate the Toll pathway. The potential for a combination of distinct proteins to mediate detection of infectious nonself in the fly will refine the concept of pattern recognition in insects.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Drosophila/microbiologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Proteínas de Transporte/genética , Elementos de DNA Transponíveis , Drosophila/genética , Drosophila/imunologia , Proteínas de Drosophila/genética , Expressão Gênica , Genes de Insetos , Hemolinfa/metabolismo , Hypocreales/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mutação , Fenótipo , Receptores de Superfície Celular/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Receptores Toll-Like
16.
Nature ; 416(6881): 640-4, 2002 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-11912488

RESUMO

The antimicrobial defence of Drosophila relies largely on the challenge-induced synthesis of an array of potent antimicrobial peptides by the fat body. The defence against Gram-positive bacteria and natural fungal infections is mediated by the Toll signalling pathway, whereas defence against Gram-negative bacteria is dependent on the Immune deficiency (IMD) pathway. Loss-of-function mutations in either pathway reduce the resistance to corresponding infections. The link between microbial infections and activation of these two pathways has remained elusive. The Toll pathway is activated by Gram-positive bacteria through a circulating Peptidoglycan recognition protein (PGRP-SA). PGRPs appear to be highly conserved from insects to mammals, and the Drosophila genome contains 13 members. Here we report a mutation in a gene coding for a putative transmembrane protein, PGRP-LC, which reduces survival to Gram-negative sepsis but has no effect on the response to Gram-positive bacteria or natural fungal infections. By genetic epistasis, we demonstrate that PGRP-LC acts upstream of the imd gene. The data on PGRP-SA with respect to the response to Gram-positive infections, together with the present report, indicate that the PGRP family has a principal role in sensing microbial infections in Drosophila.


Assuntos
Proteínas de Transporte/imunologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Bactérias Gram-Negativas/imunologia , Animais , Antibacterianos/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Epistasia Genética , Feminino , Genes de Insetos/genética , Predisposição Genética para Doença , Bactérias Gram-Negativas/fisiologia , Humanos , Mutação , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Taxa de Sobrevida , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...