Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38667912

RESUMO

Sialidases (neuraminidases) catalyze the removal of terminal sialic acid residues from glycoproteins. Novel enzymes from non-clinical isolates are of increasing interest regarding their application in the food and pharmaceutical industry. The present study aimed to evaluate the participation of carbon catabolite repression (CCR) in the regulation of cold-active sialidase biosynthesis by the psychrotolerant fungal strain Penicillium griseofulvum P29, isolated from Antarctica. The presence of glucose inhibited sialidase activity in growing and non-growing fungal mycelia in a dose- and time-dependent manner. The same response was demonstrated with maltose and sucrose. The replacement of glucose with glucose-6-phosphate also exerted CCR. The addition of cAMP resulted in the partial de-repression of sialidase synthesis. The CCR in the psychrotolerant strain P. griseofulvum P29 did not depend on temperature. Sialidase might be subject to glucose repression by both at 10 and 25 °C. The fluorescent assay using 4MU-Neu5Ac for enzyme activity determination under increasing glucose concentrations evidenced that CCR may have a regulatory role in sialidase production. The real-time RT-PCR experiments revealed that the sialidase gene was subject to glucose repression. To our knowledge, this is the first report that has studied the effect of CCR on cold-active sialidase, produced by an Antarctic strain.

2.
Biochem Biophys Rep ; 37: 101610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155944

RESUMO

The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 â†’ 3) sialyl linkages than those containing α(2 â†’ 6) linkages. Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date.

3.
Z Naturforsch C J Biosci ; 78(1-2): 49-55, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36351238

RESUMO

Bacterial sialidases are enzymes that are involved in a number of vital processes in microorganisms and in their interaction with the host or the environment. Their wide application for scientific and applied purposes requires the search for highly effective and non-pathogenic producers. Here, we report the first description of sialidase from Oerskovia paurometabola. The extracellular enzyme preparation was partially purified. The presence of sialidase was confirmed in native PAGE treated with the fluorogenic substrate 4MU-Neu5Ac. Maximum enzyme activity was registered at 37 °C and in the pH range of 4.0-5.5. The influence of metal ions and EDTA was examined. It was demonstrated that EDTA, Mn2+ and Ba2+ ions inhibit the sialidase activity to different extent, while Cd2+, Fe2+ and Fe3+ have stimulating effect on it. These features are studied for the first time concerning sialidase of Oerskovia representative. Cell bound sialidase and sialate aldolase were also established.


Assuntos
Bactérias , Neuraminidase , Neuraminidase/química , Neuraminidase/metabolismo , Ácido Edético
4.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558051

RESUMO

Sialidase preparations are applied in structural and functional studies on sialoglycans, in the production of sialylated therapeutic proteins and synthetic substrates for use in biochemical research, etc. They are obtained mainly from pathogenic microorganisms; therefore, the demand for apathogenic producers of sialidase is of exceptional importance for the safe production of this enzyme. Here, we report for the first time the presence of a sialidase gene and enzyme in the saprophytic actinomycete Oerskovia paurometabola strain O129. An electrophoretically pure, glycosylated enzyme with a molecular weight of 70 kDa was obtained after a two-step chromatographic procedure using DEAE cellulose and Q-sepharose. The biochemical characterization showed that the enzyme is extracellular, inductive, and able to cleave α(2→3,6,8) linked sialic acids with preference for α(2→3) bonds. The enzyme production was strongly induced by glycomacropeptide (GMP) from milk whey, as well as by sialic acid. Investigation of the deduced amino acid sequence revealed that the protein molecule has the typical six-bladed ß-propeller structure and contains all features of bacterial sialidases, i.e., an YRIP motif, five Asp-boxes, and the conserved amino acids in the active site. The presence of an unusual signal peptide of 40 amino acids was predicted. The sialidase-producing O. paurometabola O129 showed high and constant enzyme production. Together with its saprophytic nature, this makes it a reliable producer with high potential for industrial application.


Assuntos
Ácido N-Acetilneuramínico , Neuraminidase , Neuraminidase/metabolismo , Sequência de Aminoácidos , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos
5.
Fungal Biol ; 125(5): 412-425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910682

RESUMO

Sialidases (neuraminidases, EC 3.2.1.18) are widely distributed in biological systems but there are only scarce data on its production by filamentous fungi. The aim of this study was to obtain information about sialidase distribution in filamentous fungi from non-clinical isolates, to determine availability of sialidase gene, and to select a perspective producer. A total of 113 fungal strains belonging to Ascomycota and Zygomycota compassing 21 genera and 51 species were screened. Among them, 77 strains (11 orders, 14 families and 16 genera) were able to synthesize sialidase. Present data showed a habitat-dependent variation of sialidase activity between species and within species, depending on location. Sialidase gene was identified in sialidase-positive and sialidase-negative strains. . Among three perspective strains, the best producer was chosen based on their sialidase production depending on type of cultivation, medium composition, and growth temperature. The selected P. griseofulvum Р29 was cultivated in 3L bioreactor at 20 °C on medium supplemented with 0.5% milk whey. The results demonstrated better growth and 2.3-fold higher maximum enzyme activity compared to the shaken flask cultures. Moreover, the early occurring maximum (48 h) is an important prerequisite for future up scaling of the process.


Assuntos
Fungos , Neuraminidase , Humanos , Neuraminidase/genética
6.
Cell Mol Life Sci ; 67(12): 2025-38, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20204449

RESUMO

Mutation of tubulin chaperone E (TBCE) underlies hypoparathyroidism, retardation, and dysmorphism (HRD) syndrome with defective microtubule (MT) cytoskeleton. TBCE/yeast Pac2 comprises CAP-Gly, LRR (leucine-rich region), and UbL (ubiquitin-like) domains. TBCE folds alpha-tubulin and promotes alpha/beta dimerization. We show that Pac2 functions in MT dynamics: the CAP-Gly domain binds alpha-tubulin and MTs, and functions in suppression of benomyl sensitivity of pac2Delta mutants. Pac2 binds proteasomes: the LRR binds Rpn1, and the UbL binds Rpn10; the latter interaction mediates Pac2 turnover. The UbL also binds the Skp1-Cdc53-F-box (SCF) ubiquitin ligase complex; these competing interactions for the UbL may impact on MT dynamics. pac2Delta mutants are sensitive to misfolded protein stress. This is suppressed by ectopic PAC2 with both the CAP-Gly and UbL domains being essential. We propose a novel role for Pac2 in the misfolded protein stress response based on its ability to interact with both the MT cytoskeleton and the proteasomes.


Assuntos
Hipoparatireoidismo/genética , Microtúbulos/metabolismo , Chaperonas Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Dimerização , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Humanos , Hipoparatireoidismo/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Microtúbulos/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Proteínas/genética , Proteínas/metabolismo , Síndrome , Tubulina (Proteína)/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Extremophiles ; 13(2): 273-81, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19089529

RESUMO

Although investigators have been studying the cold-shock response in a variety of organisms for the last two decades or more, comparatively little is known about the difference between antioxidant cell response to cold stress in Antarctic and temperate microorganisms. The change of environmental temperature, which is one of the most common stresses, could be crucial for their use in the biotechnological industry and in ecological research. We compared the effect of short-term temperature downshift on antioxidant cell response in Antarctic and temperate fungi belonging to the genus Penicillium. Our study showed that downshift from an optimal temperature to 15 degrees or 6 degrees C led to a cell response typical of oxidative stress: significant reduction of biomass production; increase in the levels of oxidative damaged proteins and accumulation of storage carbohydrates (glycogen and trehalose) in comparison to growth at optimal temperature. Cell response against cold stress includes also increase in the activities of SOD and CAT, which are key enzymes for directly scavenging reactive oxygen species. This response is more species-dependent than dependent on the degree of cold-shock. Antarctic psychrotolerant strain Penicillium olsonii p14 that is adapted to life in extremely cold conditions demonstrated enhanced tolerance to temperature downshift in comparison with both mesophilic strains (Antarctic Penicillium waksmanii m12 and temperate Penicillium sp. t35).


Assuntos
Antioxidantes/metabolismo , Biotecnologia/métodos , Fungos/metabolismo , Regiões Antárticas , Antioxidantes/química , Carbono/química , Sistema Livre de Células , Temperatura Baixa , Glicogênio/química , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Temperatura , Fatores de Tempo , Trealose/química
8.
Mycol Res ; 110(Pt 11): 1347-54, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17070679

RESUMO

The effect of growth temperature (10, 15, 20, 25, and 30 degrees C) on the cell response was compared between two Antarctic Penicillium sp. strains (Penicillium sp. p14 and Penicillium sp. m12) and a European temperate strain, Penicillium sp. t35. According to the temperature profiles, Penicillium sp. p14 was identified as psychrophilic, while Penicillium sp. m12 and Penicillium sp. t35 as mesophilic fungi, respectively. The results demonstrated that the growth at low temperature does clearly induce oxidative stress events in all strains tested. Decreases in growth temperature below the optimal coincided with markedly enhanced protein carbonyl content, an indicator of oxidatively damaged proteins. Also, the cellular response to growth temperature in terms of reserve carbohydrate was determined. In the mesophilic strains there was essentially no enhancement of glycogen content. This was in contrast to the psychrophilic Penicillium sp. p14, which gradually accumulated glycogen in response to cold (10 degrees C) during the exponential phase. In addition, elevated endogenous levels of trehalose upon low-temperature stress were exhibited by all model microorganisms. Compared with temperate mesophilic Penicillium sp. t35, Antarctic strains (psychrophilic Penicillium sp. p14 and mesophilic Penicillium sp. m12) demonstrated a marked rise in activities of protective enzymes such as superoxide dismutase and catalase at decreasing temperatures. The results suggested that low-temperature resistance is partially associated with enhanced scavenging systems.


Assuntos
Penicillium/crescimento & desenvolvimento , Temperatura , Biomassa , Catalase/metabolismo , Glicogênio/metabolismo , Estresse Oxidativo , Penicillium/citologia , Penicillium/metabolismo , Especificidade da Espécie , Superóxido Dismutase/metabolismo
9.
Biosens Bioelectron ; 21(12): 2290-7, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16318918

RESUMO

An amperometric biosensor based on malate quinone oxidoreductase (MQO) was developed for monitoring of the malolactic fermentation of wines. Screen-printed electrodes coupled with appropriate mediators were used as transducers for this novel biosensor. MQO was immobilized by physical entrapment in a photo-cross-linkable poly(vinyl alcohol) polymer (PVA-SbQ) on the surface of the working electrode. Several electrochemical mediators were studied in order to lower the applied potential and minimise the matrix effects. Among them, 2,6-dichlorophenol indophenol (DPIP) and phenazine methosulfate (PMS) were chosen for further development. The working conditions (mediator concentration, applied potential and pH) were optimised for both DPIP and PMS. Detection limits for both types of biosensors were of 5 microM malic acid. Sensitivities obtained for the linear part of the calibration curve were 0.85 and 1.7 mA/M for the biosensors based on DPIP and PMS, respectively. Interferences due to non-specific oxidations were shown to be negligible when using PMS as mediator.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Análise de Alimentos/métodos , Malatos/análise , Microquímica/instrumentação , Oxirredutases/química , Vinho/análise , Eletroquímica/métodos , Eletrodos , Desenho de Equipamento , Análise de Falha de Equipamento , Malatos/química , Microquímica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...