Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(10): 6876-6885, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31510752

RESUMO

We report and study the translation of exceptionally high catalytic oxygen electroreduction activities of molybdenum-doped octahedrally shaped PtNi(Mo) nanoparticles from conventional thin-film rotating disk electrode screenings (3.43 ± 0.35 A mgPt-1 at 0.9 VRHE) to membrane electrode assembly (MEA)-based single fuel cell tests with sustained Pt mass activities of 0.45 A mgPt-1 at 0.9 Vcell, one of the highest ever reported performances for advanced shaped Pt alloys in real devices. Scanning transmission electron microscopy with energy dispersive X-ray analysis (STEM-EDX) reveals that Mo preferentially occupies the Pt-rich edges and vertices of the element-anisotropic octahedral PtNi particles. Furthermore, by combining in situ wide-angle X-ray spectroscopy, X-ray fluorescence, and STEM-EDX elemental mapping with electrochemical measurements, we finally succeeded to realize high Ni retention in activated PtNiMo nanoparticles even after prolonged potential-cycling stability tests. Stability losses at the anodic potential limits were mainly attributed to the loss of the octahedral particle shape. Extending the anodic potential limits of the tests to the Pt oxidation region induced detectable Ni losses and structural changes. Our study shows on an atomic level how Mo adatoms on the surface impact the Ni surface composition, which, in turn, gives rise to the exceptionally high experimental catalytic ORR reactivity and calls for strategies on how to preserve this particular surface composition to arrive at performance stabilities comparable with state-of-the-art spherical dealloyed Pt core-shell catalysts.

2.
Soft Matter ; 13(44): 8096-8107, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29085948

RESUMO

Neural adhesion, maturation, and the correct wiring of the brain to establish each neuron's intended connectivity are controlled by complex interactions of bioactive molecules such as ligands, growth factors, or enzymes. The correct pairing of adjacent neurons is thought to be highly regulated by ligand-mediated cell-cell adhesion proteins, which are known to induce signaling activities. We developed a new platform consisting of supported lipid bilayers incorporated with Fc-chimera synaptic proteins like ephrinA5 or N-cadherin. We extensively characterized their function employing a quartz crystal microbalance with dissipation (QCM-D), calcium imaging, and immunofluorescence analysis. Our biomimetic platform has been shown to promote neural cell adhesion and to improve neural maturation at day in vitro 7 (DIV7) as indicated by an elevated expression of synaptophysin.

3.
Analyst ; 141(14): 4319-25, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27169923

RESUMO

The development of methods for nanoparticle detection is highly desirable due to their increasing presence in the environment. Recently, we have shown that the electrochemical detection in flow is one of the possible solutions. Here we demonstrate a dramatic improvement of analytical parameters of such detection. The significant enhancement of an amperometric signal resulting from the electrocatalytic oxidation of ascorbic acid (AA) in a negatively charged phenylsulphonated carbon nanoparticle suspension in the millifluidic flow injection analysis system as compared to earlier results (D. Ogonczyk, et al., Electrochem. Commun., 2014, 43, 40) is presented. This effect results from the tailoring of electrostatic interactions, e.g. optimization of the supporting electrolyte and AA concentration and/or immobilization of positively charged functionalities at the electrode surface. The sensitivity is improved by almost three orders of magnitude and the limit of detection of carbon nanoparticles is decreased by two orders of magnitude down to 0.001 mg mL(-1).

4.
J Mater Chem B ; 3(23): 4654-4662, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262480

RESUMO

Bimetallic silver-gold nanoparticles were prepared by co-reduction using citrate and tannic acid in aqueous solution and colloidally stabilized with poly(N-vinylpyrrolidone) (PVP). The full composition range of silver : gold from 0 : 100 to 100 : 0 (n : n) was prepared with steps of 10 mol%. The nanoparticles were spherical, monodispersed, and had a diameter of ∼6 nm, except for Ag : Au 90 : 10 nanoparticles and pure Ag nanoparticles which were slightly larger. The size of the nanoalloys was determined by differential centrifugal sedimentation (DCS) and transmission electron microscopy (TEM). By means of X-ray powder diffraction (XRD) together with Rietveld refinement, precise lattice parameters, crystallite size and microstrain were determined. Scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS) showed that the particles consisted of a gold-rich core and a silver-rich shell. XRD and DCS indicated that the nanoparticles were not twinned, except for pure Ag and Ag : Au 90 : 10, although different domains were visible in the TEM. A remarkable negative deviation from Vegard's linear rule of alloy mixtures was observed (isotropic contraction of the cubic unit cell with a minimum at a 50 : 50 composition). This effect was also found for Ag:Au bulk alloys, but it was much more pronounced for the nanoalloys. Notably, it was much less pronounced for pure silver and gold nanoparticles. The microstrain was increased along with the contraction of the unit cell with a broad maximum at a 50 : 50 composition. The synthesis is based on aqueous solvents and can be easily scaled up to a yield of several mg of a well dispersed nanoalloy with application potential due to its tuneable antibacterial action (silver) and its optical properties for bioimaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...