Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16348, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770555

RESUMO

Many G protein-coupled receptors (GPCRs) are allosterically modulated by inorganic ions. Although the intraoral ionic composition of the oral cavity varies depending on the living environment and feeding behavior, little is known about whether and how it affects the function of taste receptor type 1 (T1R), a member of the class C GPCR family. Here, we report that chloride ions allosterically modulate the functions of specific fish T1Rs, namely, mfT1R2a/mfT1R3 and zfT1R2a/zfT1R3. Site-directed mutagenesis revealed mfT1R2a K265, which lies in the extracellular domain of mfT1R2a, to be as a critical residue for the modulation of mfT1R2a/mfT1R3 by Cl-. However, this residue is not conserved in zfT1R2a, and the introduction of the key residue at the corresponding site of another T1R, mfT1R2b, did not confer Cl- susceptibility. These results indicate the variability of the determinants of Cl- susceptibility.


Assuntos
Cloretos , Paladar , Animais , Comportamento Alimentar , Peixes/genética , Halogênios
2.
FEBS Open Bio ; 13(3): 468-477, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651084

RESUMO

In vertebrates, nutritional tastants, such as amino acids and sugars, are recognized by G-protein-coupled receptors of the taste receptor type 1 (T1R) family. Previous studies have shown that fish T1Rs are functionally distinct from mammalian T1Rs in certain regards. Here, we report the existence of oral receptors with high sensitivity to amino acids in zebrafish and medaka fish. We describe the construction of multiple cell lines stably expressing functional T1Rs (from medaka fish or zebrafish) with a chimeric G-protein (G16gust44) using the Flp-In system. Through functional assays with these cell lines, medaka fish and zebrafish were confirmed to possess particular T1Rs highly sensitive to l-proline, possibly reflecting the physiological importance of l-proline in teleosts, in line with previous studies.


Assuntos
Oryzias , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Paladar/fisiologia , Prolina/metabolismo , Aminoácidos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA