Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548340

RESUMO

A long-standing question in vision science is how the three cone photoreceptor types-long (L), medium (M), and short (S) wavelength sensitive-combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L + S and L vs. M + S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds following adaptation are L vs. M and S vs. L + M. These cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in the cortex. While neurons with the appropriate M vs. L + S and L vs. M + S opponency have been reported in the retina and lateral geniculate nucleus, their existence continues to be debated. Resolving this long-standing debate is necessary because a complete account of the cone opponency in the retinal output is critical for understanding how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to noninvasively measure foveal RGC light responses in the living Macaca fascicularis eye. We confirm the presence of L vs. M + S and M vs. L + S neurons with noncardinal cone opponency and demonstrate that cone-opponent signals in the retinal output are more diverse than classically thought.


Assuntos
Percepção de Cores , Fóvea Central , Células Fotorreceptoras Retinianas Cones , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Fóvea Central/fisiologia , Percepção de Cores/fisiologia , Estimulação Luminosa/métodos , Masculino , Feminino , Macaca fascicularis
2.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745616

RESUMO

A long-standing question in vision science is how the three cone photoreceptor types - long (L), medium (M) and short (S) wavelength sensitive - combine to generate our perception of color. Hue perception can be described along two opponent axes: red-green and blue-yellow. Psychophysical measurements of color appearance indicate that the cone inputs to the red-green and blue-yellow opponent axes are M vs. L+S and L vs. M+S, respectively. However, the "cardinal directions of color space" revealed by psychophysical measurements of color detection thresholds are L vs. M and S vs. L+M. The cardinal directions match the most common cone-opponent retinal ganglion cells (RGCs) in the primate retina. Accordingly, the cone opponency necessary for color appearance is thought to be established in cortex. However, small populations with the appropriate M vs. L+S and L vs. M+S cone-opponency have been reported in large surveys of cone inputs to primate RGCs and their projections to the lateral geniculate nucleus (LGN) yet their existence continues to be debated. Resolving this long-standing open question is needed as a complete account of the cone-opponency in the retinal output is critical for efforts to understand how downstream neural circuits process color. Here, we performed adaptive optics calcium imaging to longitudinally and noninvasively measurements of the foveal RGC light responses in the living macaque eye. We confirm the presence of L vs. M+S and M vs. L+S neurons with non-cardinal cone-opponency and demonstrate that cone-opponent signals in the retinal output are substantially more diverse than classically thought.

3.
PLoS One ; 17(11): e0278261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445926

RESUMO

The primate fovea is specialized for high acuity chromatic vision, with the highest density of cone photoreceptors and a disproportionately large representation in visual cortex. The unique visual properties conferred by the fovea are conveyed to the brain by retinal ganglion cells, the somas of which lie at the margin of the foveal pit. Microelectrode recordings of these centermost retinal ganglion cells have been challenging due to the fragility of the fovea in the excised retina. Here we overcome this challenge by combining high resolution fluorescence adaptive optics ophthalmoscopy with calcium imaging to optically record functional responses of foveal retinal ganglion cells in the living eye. We use this approach to study the chromatic responses and spatial transfer functions of retinal ganglion cells using spatially uniform fields modulated in different directions in color space and monochromatic drifting gratings. We recorded from over 350 cells across three Macaca fascicularis primates over a time period of weeks to months. We find that the majority of the L vs. M cone opponent cells serving the most central foveolar cones have spatial transfer functions that peak at high spatial frequencies (20-40 c/deg), reflecting strong surround inhibition that sacrifices sensitivity at low spatial frequencies but preserves the transmission of fine detail in the retinal image. In addition, we fit to the drifting grating data a detailed model of how ganglion cell responses draw on the cone mosaic to derive receptive field properties of L vs. M cone opponent cells at the very center of the foveola. The fits are consistent with the hypothesis that foveal midget ganglion cells are specialized to preserve information at the resolution of the cone mosaic. By characterizing the functional properties of retinal ganglion cells in vivo through adaptive optics, we characterize the response characteristics of these cells in situ.


Assuntos
Fóvea Central , Células Ganglionares da Retina , Animais , Macaca fascicularis , Retina , Células Fotorreceptoras Retinianas Cones
4.
Mol Ther ; 30(3): 1315-1328, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547460

RESUMO

All retina-based vision restoration approaches rely on the assumption that photoreceptor loss does not preclude reactivation of the remaining retinal architecture. Whether extended periods of vision loss limit the efficacy of restorative therapies at the retinal level is unknown. We examined long-term changes in optogenetic responsivity of foveal retinal ganglion cells (RGCs) in non-human primates following localized photoreceptor ablation by high-intensity laser exposure. By performing fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) of RGCs expressing both the calcium indicator GCaMP6s and the optogenetic actuator ChrimsonR, it was possible to track optogenetic-mediated calcium responses in deafferented RGCs over time. Fluorescence fundus photography revealed a 40% reduction in ChrimsonR fluorescence from RGCs lacking photoreceptor input over the 3 weeks following photoreceptor ablation. Despite this, in vivo imaging revealed good cellular preservation of RGCs 3 months after the loss of photoreceptor input, and histology confirmed good structural preservation at 2 years. Optogenetic responses of RGCs in primate persisted for at least 1 year after the loss of photoreceptor input, with a sensitivity index similar to optogenetic responses recorded in intact retina. These results are promising for all potential therapeutic approaches to vision restoration that rely on preservation and reactivation of RGCs.


Assuntos
Cálcio , Optogenética , Animais , Optogenética/métodos , Células Fotorreceptoras , Primatas , Retina
5.
Nat Commun ; 11(1): 1703, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245977

RESUMO

Optogenetic therapies for vision restoration aim to confer intrinsic light sensitivity to retinal ganglion cells when photoreceptors have degenerated and light sensitivity has been irreversibly lost. We combine adaptive optics ophthalmoscopy with calcium imaging to optically record optogenetically restored retinal ganglion cell activity in the fovea of the living primate. Recording from the intact eye of a living animal, we compare the patterns of activity evoked by the optogenetic actuator ChrimsonR with natural photoreceptor mediated stimulation in the same retinal ganglion cells. Optogenetic responses are recorded more than one year following administration of the therapy and two weeks after acute loss of photoreceptor input in the living animal. This in vivo imaging approach could be paired with any therapy to minimize the number of primates required to evaluate restored activity on the retinal level, while maximizing translational benefit by using an appropriate pre-clinical model of the human visual system.


Assuntos
Cegueira/terapia , Optogenética/métodos , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/terapia , Células Ganglionares da Retina/fisiologia , Animais , Cegueira/diagnóstico , Cegueira/etiologia , Dependovirus , Modelos Animais de Doenças , Feminino , Fóvea Central/citologia , Fóvea Central/diagnóstico por imagem , Fóvea Central/patologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Macaca fascicularis , Masculino , Oftalmoscopia , Imagem Óptica , Parvovirinae/genética , Degeneração Retiniana/complicações , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia
6.
PLoS One ; 13(11): e0207102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485298

RESUMO

The primate foveola, with its high cone density and magnified cortical representation, is exquisitely specialized for high-resolution spatial vision. However, uncovering the wiring of retinal circuitry responsible for this performance has been challenging due to the difficulty in recording receptive fields of foveal retinal ganglion cells (RGCs) in vivo. In this study, we use adaptive optics scanning laser ophthalmoscopy (AOSLO) to image the calcium responses of RGCs in the living primate, with a stable, high precision visual stimulus that allowed us to localize the receptive fields of hundreds of foveal ganglion cells. This approach revealed a precisely radial organization of foveal RGCs, despite the many distortions possible during the extended developmental migration of foveal cells. By back projecting the line connecting RGC somas to their receptive fields, we have been able to define the 'physiological center' of the foveola, locating the vertical meridian separating left and right hemifields in vivo.


Assuntos
Fóvea Central/citologia , Fóvea Central/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Visão Ocular/fisiologia , Animais , Cálcio/metabolismo , Dependovirus/genética , Fóvea Central/diagnóstico por imagem , Técnicas de Transferência de Genes , Vetores Genéticos , Macaca fascicularis , Masculino , Microscopia Confocal , Oftalmoscopia , Análise Espaço-Temporal , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...