Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8023, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049431

RESUMO

The microplastic body burden of marine animals is often assumed to reflect levels of environmental contamination, yet variations in feeding ecology and regional trait expression could also affect a species' risk of contaminant uptake. Here, we explore the global inventory of individual microplastic body burden for invertebrate species inhabiting marine sediments across 16 biogeographic provinces. We show that individual microplastic body burden in benthic invertebrates cannot be fully explained by absolute levels of microplastic contamination in the environment, because interspecific differences in behaviour and feeding ecology strongly determine microplastic uptake. Our analyses also indicate a degree of species-specific particle selectivity; likely associated with feeding biology. Highest microplastic burden occurs in the Yellow and Mediterranean Seas and, contrary to expectation, amongst omnivores, predators, and deposit feeders rather than suspension feeding species. Our findings highlight the inadequacy of microplastic uptake risk assessments based on inventories of environmental contamination alone, and the need to understand how species behaviour and trait expression covary with microplastic contamination.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/análise , Ecologia , Invertebrados , Organismos Aquáticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Ecossistema
2.
R Soc Open Sci ; 10(7): 230155, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37448479

RESUMO

There is an urgent need to address coastal dynamics as a fundamental interaction between physical and biological processes, particularly when trying to predict future biological-physical linkages under anticipated changes in environmental forcing. More integrated modelling, support for observational networks and the use of management interventions as controlled experimental exercises should now be vigorously pursued.

3.
Ambio ; 51(2): 370-382, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34628602

RESUMO

Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.


Assuntos
Ecossistema , Sedimentos Geológicos , Regiões Árticas , Mudança Climática , Camada de Gelo
4.
Environ Manage ; 68(4): 505-521, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34327556

RESUMO

Cumulative and synergistic impacts from environmental pressures, particularly in low-lying tropical coastal regions, present challenges for the governance of ecosystems, which provide natural resource-based livelihoods for communities. Here, we seek to understand the relationship between responses to the impacts of El Niño and La Niña events and the vulnerability of mangrove-dependent communities in the Caribbean region of Colombia. Using two case study sites, we show how communities are impacted by, and undertake reactive short-term responses to, El Niño and La Niña events, and how such responses can affect their adaptive capacity to progressive environmental deterioration. We show that certain coping measures to climate variability currently deliver maladaptive outcomes, resulting in circumstances that could contribute to system 'lock-in' and engender undesirable ecological states, exacerbating future livelihood vulnerabilities. We highlight the significant role of social barriers on vulnerabilities within the region, including perceptions of state abandonment, mistrust and conflicts with authorities. Opportunities to reduce vulnerability include enhancing the communities' capacity to adopt more positive and preventative responses based on demonstrable experiential learning capacity. However, these will require close cooperation between formal and informal organisations at different levels, and the development of shared coherent adaptation strategies to manage the complexity of multiple interacting environmental and climatic pressures.


Assuntos
Mudança Climática , Ecossistema , Região do Caribe , Colômbia , Emprego , Previsões , Humanos
5.
Ecol Evol ; 11(11): 6900-6912, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141264

RESUMO

Climate-induced changes in the ocean and sea ice environment of the Arctic are beginning to generate major and rapid changes in Arctic ecosystems, but the effects of directional forcing on the persistence and distribution of species remain poorly understood. Here, we examine the reproductive traits and population dynamics of the bivalve Astarte crenata and sea star Ctenodiscus crispatus across a north-south transect that intersects the polar front in the Barents Sea. Both species present large oocytes indicative of short pelagic or direct development that do not differ in size-frequency between 74.5 and 81.3º latitude. However, despite gametogenic maturity, we found low frequencies of certain size classes within populations that may indicate periodic recruitment failure. We suggest that recruitment of A. crenata could occur periodically when conditions are favorable, while populations of C. crispatus are characterized by episodic recruitment failures. Pyloric caeca indices in C. crispatus show that food uptake is greatest at, and north of, the polar front, providing credence to the view that interannual variations in the quantity and quality of primary production and its flux to the seafloor, linked to the variable extent and thickness of sea ice, are likely to be strong determinants of physiological fitness. Our findings provide evidence that the distribution and long-term survival of species is not only a simple function of adaptive capacity to specific environmental changes, but will also be contingent on the frequency and occurrence of years where environmental conditions support reproduction and settlement.

7.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190365, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862817

RESUMO

Arctic marine ecosystems are undergoing rapid correction in response to multiple expressions of climate change, but the consequences of altered biodiversity for the sequestration, transformation and storage of nutrients are poorly constrained. Here, we determine the bioturbation activity of sediment-dwelling invertebrate communities over two consecutive summers that contrasted in sea-ice extent along a transect intersecting the polar front. We find a clear separation in community composition at the polar front that marks a transition in the type and amount of bioturbation activity, and associated nutrient concentrations, sufficient to distinguish a southern high from a northern low. While patterns in community structure reflect proximity to arctic versus boreal conditions, our observations strongly suggest that faunal activity is moderated by seasonal variations in sea ice extent that influence food supply to the benthos. Our observations help visualize how a climate-driven reorganization of the Barents Sea benthic ecosystem may be expressed, and emphasize the rapidity with which an entire region could experience a functional transformation. As strong benthic-pelagic coupling is typical across most parts of the Arctic shelf, the response of these ecosystems to a changing climate will have important ramifications for ecosystem functioning and the trophic structure of the entire food web. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Mudança Climática , Ecossistema , Invertebrados/crescimento & desenvolvimento , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/isolamento & purificação , Regiões Árticas , Biodiversidade , Cadeia Alimentar , Sedimentos Geológicos/química , Camada de Gelo , Invertebrados/classificação , Noruega , Oceanos e Mares , Estações do Ano
8.
PeerJ ; 8: e8171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140297

RESUMO

In order to help safeguard biodiversity from global changes, the Conference of the Parties developed a Strategic Plan for Biodiversity for the period 2011-2020 that included a list of twenty specific objectives known as the Aichi Biodiversity Targets. With the end of that timeframe in sight, and despite major advancements in biodiversity conservation, evidence suggests that the majority of the Targets are unlikely to be met. This article is part of a series of perspective pieces from the 4th World Conference on Marine Biodiversity (May 2018, Montréal, Canada) to identify next steps towards successful biodiversity conservation in marine environments. We specifically reviewed holistic environmental assessment studies (HEA) and their contribution to reaching the Targets. Our analysis was based on multiple environmental approaches which can be considered as holistic, and we discuss how HEA can contribute to the Aichi Biodiversity Targets in the near future. We found that only a few HEA articles considered a specific Biodiversity Target in their research, and that Target 11, which focuses on marine protected areas, was the most commonly cited. We propose five research priorities to enhance HEA for marine biodiversity conservation beyond 2020: (i) expand the use of holistic approaches in environmental assessments, (ii) standardize HEA vocabulary, (iii) enhance data collection, sharing and management, (iv) consider ecosystem spatio-temporal variability and (v) integrate ecosystem services in HEA. The consideration of these priorities will promote the value of HEA and will benefit the Strategic Plan for Biodiversity.

9.
Proc Biol Sci ; 287(1919): 20192143, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31992167

RESUMO

Functional trait-based approaches are increasingly adopted to understand and project ecological responses to environmental change; however, most assume trait expression is constant between conspecifics irrespective of context. Using two species of benthic invertebrate (brittlestars Amphiura filiformis and Amphiura chiajei), we demonstrate that trait expression at individual and community levels differs with biotic and abiotic context. We use PERMANOVA to test the effect of species identity, density and local environmental history on individual (righting and burrowing) and community (particle reworking and burrow ventilation) trait expression, as well as associated effects on ecosystem functioning (sediment nutrient release). Trait expression differs with context, with repercussions for the faunal mediation of ecosystem processes; we find increased rates of righting and burial behaviour and greater particle reworking with increasing density that are reflected in nutrient generation. However, the magnitude of effects differed within and between species, arising from site-specific environmental and morphological differences. Our results indicate that traits and processes influencing change in ecosystem functioning are products of both prevailing and historic conditions that cannot be constrained within typologies. Trait-based study must incorporate context-dependent variation, including intraspecific differences from individual to ecosystem scales, to avoid jeopardizing projections of ecosystem functioning and service delivery.


Assuntos
Organismos Aquáticos/fisiologia , Invertebrados/fisiologia , Animais , Comportamento Animal , Biodiversidade , Equinodermos/fisiologia , Ecossistema , Fenótipo
10.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190107, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31983332

RESUMO

Innovative solutions to improve the condition and resilience of ecosystems are needed to address societal challenges and pave the way towards a climate-resilient future. Nature-based solutions offer the potential to protect, sustainably manage and restore natural or modified ecosystems while providing multiple other benefits for health, the economy, society and the environment. However, the implementation of nature-based solutions stems from a discourse that is almost exclusively derived from a terrestrial and urban context and assumes that risk reduction is resolved locally. We argue that this position ignores the importance of complex ecological interactions across a range of temporal and spatial scales and misses the substantive contribution from marine ecosystems, which are notably absent from most climate mitigation and adaptation strategies that extend beyond coastal disaster management. Here, we consider the potential of sediment-dwelling fauna and flora to inform and support nature-based solutions, and how the ecology of benthic environments can enhance adaptation plans. We illustrate our thesis with examples of practice that are generating, or have the potential to deliver, transformative change and discuss where further innovation might be applied. Finally, we take a reflective look at the realized and potential capacity of benthic-based solutions to contribute to adaptation plans and offer our perspectives on the suitability and shortcomings of past achievements and the prospective rewards from sensible prioritization of future research. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Aclimatação , Meio Ambiente
11.
Sci Data ; 6(1): 58, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086191

RESUMO

The activities of a diverse array of sediment-dwelling fauna are known to mediate carbon remineralisation, biogeochemical cycling and other important properties of marine ecosystems, but the contributions that different seabed communities make to the global inventory have not been established. Here we provide a comprehensive georeferenced database of measured values of bioturbation intensity (Db, n = 1281), burrow ventilation rate (q, n = 765, 47 species) and the mixing depth (L, n = 1780) of marine soft sediments compiled from the scientific literature (1864-2018). These data provide reference information that can be used to inform and parameterise global, habitat specific and/or species level biogeochemical models that will be of value within the fields of geochemistry, ecology, climate, and palaeobiology. We include metadata relating to the source, timing and location of each study, the methodology used, and environmental and experimental information. The dataset presents opportunity to interrogate current ecological theory, refine functional typologies, quantify uncertainty and/or test the relevance and robustness of models used to project ecosystem responses to change.


Assuntos
Ciclo do Carbono , Ecossistema , Sedimentos Geológicos , Animais , Invertebrados
12.
Proc Biol Sci ; 286(1901): 20190287, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30991928

RESUMO

There is now strong evidence that ecosystem properties are influenced by alterations in biodiversity. The consensus that has emerged from over two decades of research is that the form of the biodiversity-functioning relationship follows a saturating curve. However, the foundation from which these conclusions are drawn mostly stems from empirical investigations that have not accounted for post-extinction changes in community composition and structure, or how surviving species respond to new circumstances and modify their contribution to functioning. Here, we use marine sediment-dwelling invertebrate communities to experimentally assess whether post-extinction compensatory mechanisms (simulated by increasing species biomass) have the potential to alter biodiversity-ecosystem function relations. Consistent with recent numerical simulations, we find that the form of the biodiversity-function curve is dependent on whether or not compensatory responses are present, the cause and extent of extinction, and species density. When species losses are combined with the compensatory responses of surviving species, both community composition, dominance structure, and the pool and relative expression of functionally important traits change and affect species interactions and behaviour. These observations emphasize the importance of post-extinction community composition in determining the stability of ecosystem functioning following extinction. Our results caution against the use of the generalized biodiversity-function curve when generating probabilistic estimates of post-extinction ecosystem properties for practical application.


Assuntos
Anfípodes/fisiologia , Biodiversidade , Biomassa , Cadeia Alimentar , Caramujos/fisiologia , Animais , Inglaterra , Sedimentos Geológicos
13.
Philos Trans A Math Phys Eng Sci ; 376(2119)2018 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-29610380

RESUMO

The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

14.
Proc Biol Sci ; 284(1855)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566482

RESUMO

There is unequivocal evidence that altered biodiversity, through changes in the expression and distribution of functional traits, can have large impacts on ecosystem properties. However, trait-based summaries of how organisms affect ecosystem properties often assume that traits show constancy within and between populations and that species contributions to ecosystem functioning are not overly affected by the presence of other species or variations in abiotic conditions. Here, we evaluate the validity of these assumptions using an experiment in which three geographically distinct populations of intertidal sediment-dwelling invertebrates are reciprocally substituted. We find that the mediation of macronutrient generation by these species can vary between different populations and show that changes in biotic and/or abiotic conditions can further modify functionally important aspects of the behaviour of individuals within a population. Our results demonstrate the importance of knowing how, when, and why traits are expressed and suggest that these dimensions of species functionality are not sufficiently well-constrained to facilitate the accurate projection of the functional consequences of change. Information regarding the ecological role of key species and assumptions about the form of species-environment interactions needs urgent refinement.


Assuntos
Biodiversidade , Ecossistema , Invertebrados/fisiologia , Animais , Fenótipo , Dinâmica Populacional
15.
Sci Rep ; 7: 43695, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28255165

RESUMO

Consensus has been reached that global biodiversity loss impairs ecosystem functioning and the sustainability of services beneficial to humanity. However, the ecosystem consequences of extinction in natural communities are moderated by compensatory species dynamics, yet these processes are rarely accounted for in impact assessments and seldom considered in conservation programmes. Here, we use marine invertebrate communities to parameterise numerical models of sediment bioturbation - a key mediator of biogeochemical cycling - to determine whether post-extinction compensatory mechanisms alter biodiversity-ecosystem function relations following non-random extinctions. We find that compensatory dynamics lead to trajectories of sediment mixing that diverge from those without compensation, and that the form, magnitude and variance of each probabilistic distribution is highly influenced by the type of compensation and the functional composition of surviving species. Our findings indicate that the generalized biodiversity-function relation curve, as derived from multiple empirical investigations of random species loss, is unlikely to yield representative predictions for ecosystem properties in natural systems because the influence of post-extinction community dynamics are under-represented. Recognition of this problem is fundamental to management and conservation efforts, and will be necessary to ensure future plans and adaptation strategies minimize the adverse impacts of the biodiversity crisis.


Assuntos
Biodiversidade , Ecossistema , Extinção Biológica , Animais , Invertebrados
16.
Biogeochemistry ; 135(1): 121-133, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009694

RESUMO

Benthic communities play a major role in organic matter remineralisation and the mediation of many aspects of shelf sea biogeochemistry. Few studies have considered how changes in community structure associated with different levels of physical disturbance affect sediment macronutrients and carbon following the cessation of disturbance. Here, we investigate how faunal activity (sediment particle reworking and bioirrigation) in communities that have survived contrasting levels of bottom fishing affect sediment organic carbon content and macronutrient concentrations ([NH4-N], [NO2-N], [NO3-N], [PO4-P], [SiO4-Si]). We find that organic carbon content and [NO3-N] decline in cohesive sediment communities that have experienced an increased frequency of fishing, whilst [NH4-N], [NO2-N], [PO4-P] and [SiO4-Si] are not affected. [NH4-N] increases in non-cohesive sediments that have experienced a higher frequency of fishing. Further analyses reveal that the way communities are restructured by physical disturbance differs between sediment type and with fishing frequency, but that changes in community structure do little to affect bioturbation and associated levels of organic carbon and nutrient concentrations. Our results suggest that in the presence of physical disturbance, irrespective of sediment type, the mediation of macronutrient and carbon cycling increasingly reflects the decoupling of organism-sediment relations. Indeed, it is the traits of the species that reside at the sediment-water interface, or that occupy deeper parts of the sediment profile, that are disproportionately expressed post-disturbance, that are most important for sustaining biogeochemical functioning.

17.
Biogeochemistry ; 135(1): 135-153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009695

RESUMO

Microbes and benthic macro-invertebrates interact in sediments to play a major role in the biogeochemical cycling of organic matter, but the extent to which their contributions are modified following natural and anthropogenic changes has received little attention. Here, we investigate how nitrogen transformations, ascertained from changes in archaeal and bacterial N-cycling microbes and water macronutrient concentrations ([NH4-N], [NO2-N], [NO3-N]), in sand and sandy mud sediments differ when macrofaunal communities that have previously experienced contrasting levels of chronic fishing disturbance are exposed to organic matter enrichment. We find that differences in macrofaunal community structure related to differences in fishing activity affect the capacity of the macrofauna to mediate microbial nitrogen cycling in sand, but not in sandy mud environments. Whilst we found no evidence for a change in ammonia oxidiser community structure, we did find an increase in archaeal and bacterial denitrifier (AnirKa, nirS) and anammox (hzo) transcripts in macrofaunal communities characterized by higher ratios of suspension to deposit feeders, and a lower density but higher biomass of sediment-reworking fauna. Our findings suggest that nitrogen transformation in shelf sandy sediments is dependent on the stimulation of specific nitrogen cycling pathways that are associated with differences in the composition and context-dependent expression of the functional traits that belong to the resident bioturbating macrofauna community.

18.
Biogeochemistry ; 135(1): 89-102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009693

RESUMO

Fundamental changes in seawater carbonate chemistry and sea surface temperatures associated with the ocean uptake of anthropogenic CO2 are accelerating, but investigations of the susceptibility of biogeochemical processes to the simultaneous occurrence of multiple components of climate change are uncommon. Here, we quantify how concurrent changes in enhanced temperature and atmospheric pCO2, coupled with an associated shift in macrofaunal community structure and behavior (sediment particle reworking and bioirrigation), modify net carbon and nutrient concentrations (NH4-N, NOx-N, PO4-P) in representative shelf sea sediment habitats (mud, sandy-mud, muddy-sand and sand) of the Celtic Sea. We show that net concentrations of organic carbon, nitrogen and phosphate are, irrespective of sediment type, largely unaffected by a simultaneous increase in temperature and atmospheric pCO2. However, our analyses also reveal that a reduction in macrofaunal species richness and total abundance occurs under future environmental conditions, varies across a gradient of cohesive to non-cohesive sediments, and negatively moderates biogeochemical processes, in particular nitrification. Our findings indicate that future environmental conditions are unlikely to have strong direct effects on biogeochemical processes but, particularly in muddy sands, the abundance, activity, composition and functional role of invertebrate communities are likely to be altered in ways that will be sufficient to regulate the function of the microbial community and the availability of nutrients in shelf sea waters.

19.
Sci Rep ; 6: 39325, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996034

RESUMO

The ecological consequences of species loss are widely studied, but represent an end point of environmental forcing that is not always realised. Changes in species evenness and the rank order of dominant species are more widespread responses to directional forcing. However, despite the repercussions for ecosystem functioning such changes have received little attention. Here, we experimentally assess how the rearrangement of species dominance structure within specific levels of evenness, rather than changes in species richness and composition, affect invertebrate particle reworking and burrow ventilation behaviour - important moderators of microbial-mediated remineralisation processes in benthic environments - and associated levels of sediment nutrient release. We find that the most dominant species exert a disproportionate influence on functioning at low levels of evenness, but that changes in biomass distribution and a change in emphasis in species-environmental interactions become more important in governing system functionality as evenness increases. Our study highlights the need to consider the functional significance of alterations to community attributes, rather than to solely focus on the attainment of particular levels of diversity when safeguarding biodiversity and ecosystems that provide essential services to society.

20.
Sci Rep ; 6: 20540, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847483

RESUMO

Coastal and shelf environments support high levels of biodiversity that are vital in mediating ecosystem processes, but they are also subject to noise associated with mounting levels of offshore human activity. This has the potential to alter the way in which species interact with their environment, compromising the mediation of important ecosystem properties. Here, we show that exposure to underwater broadband sound fields that resemble offshore shipping and construction activity can alter sediment-dwelling invertebrate contributions to fluid and particle transport--key processes in mediating benthic nutrient cycling. Despite high levels of intra-specific variability in physiological response, we find that changes in the behaviour of some functionally important species can be dependent on the class of broadband sound (continuous or impulsive). Our study provides evidence that exposing coastal environments to anthropogenic sound fields is likely to have much wider ecosystem consequences than are presently acknowledged.


Assuntos
Sedimentos Geológicos/análise , Animais , Ecossistema , Monitoramento Ambiental/métodos , Invertebrados , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...