Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biosyst ; 13(11): 2303-2309, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-28875213

RESUMO

Adhesive interactions between molecules on tumor cells and those on target organs play a key role in organ specific metastasis. Poly-N-acetyl-lactosamine (polyLacNAc) substituted N-oligosaccharides on melanoma cell surface glycoproteins promote lung specific metastasis via galectin-3 by facilitating their arrest and extravasation. This study reports the identification and characterization of galectin-3 interacting proteins using a combination of galectin-3 sepharose affinity and leucoagglutinating phytohemagglutinin (L-PHA) columns. A total of 83 proteins were identified as galectin-3 interacting glycoproteins, of which 35 were constituents of the L-PHA bound fraction, suggesting that these proteins carry polyLacNAc substituted ß1,6 branched N-glycans. The identities of some of these proteins, like LAMP-1, LAMP-3, basigin, embigin, and α5 and ß1 Integrin, have been confirmed by western blotting, and functional relevance with respect to metastatic properties has been established.


Assuntos
Proteínas de Transporte/metabolismo , Galectina 3/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Espectrometria de Massas , Melanoma/patologia , Mapeamento de Interação de Proteínas/métodos , Animais , Cromatografia de Afinidade , Cromatografia Líquida , Espectrometria de Massas/métodos , Melanoma Experimental , Camundongos , Ligação Proteica , Reprodutibilidade dos Testes , Fluxo de Trabalho
2.
Proteomics ; 15(2-3): 245-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315903

RESUMO

The receptor for advanced glycation end products (RAGE) is one of the most important proteins implicated in diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. It is a pattern recognition receptor by virtue of its ability to interact with multiple ligands, RAGE activates several signal transduction pathways through involvement of various kinases that phosphorylate their respective substrates. Only few substrates have been known to be phosphorylated in response to activation by RAGE (e.g., nuclear factor kappa B); however, it is possible that these kinases can phosphorylate multiple substrates depending upon their expression and localization, leading to altered cellular responses in different cell types and conditions. One such example is, glycogen synthase kinase 3 beta which is known to phosphorylate glycogen synthase, acts downstream to RAGE, and hyperphosphorylates microtubule-associated protein tau causing neuronal damage. Thus, it is important to understand the role of various RAGE-activated kinases and their substrates. Therefore, we have reviewed here the details of RAGE-activated kinases in response to different ligands and their respective phosphoproteome. Furthermore, we discuss the analysis of the data mined for known substrates of these kinases from the PhosphoSitePlus (http://www.phosphosite.org) database, and the role of some of the important substrates involved in cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In summary, this review provides information on RAGE-activated kinases and their phosphoproteome, which will be helpful in understanding the possible role of RAGE and its ligands in progression of diseases.


Assuntos
Proteínas Quinases/metabolismo , Proteômica/métodos , Receptores Imunológicos/metabolismo , Transdução de Sinais , Animais , Humanos , Fosforilação , Proteoma/metabolismo , Receptor para Produtos Finais de Glicação Avançada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...