Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38470488

RESUMO

Studies on severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) have highlighted the crucial role of host proteases for viral replication and the immune response. The serine proteases furin and TMPRSS2 and lysosomal cysteine proteases facilitate viral entry by limited proteolytic processing of the spike (S) protein. While neutrophils are recruited to the lungs during COVID-19 pneumonia, little is known about the role of the neutrophil serine proteases (NSPs) cathepsin G (CatG), elastase (NE), and proteinase 3 (PR3) on SARS-CoV-2 entry and replication. Furthermore, the current paradigm is that NSPs may contribute to the pathogenesis of severe COVID-19. Here, we show that these proteases cleaved the S protein at multiple sites and abrogated viral entry and replication in vitro. In mouse models, CatG significantly inhibited viral replication in the lung. Importantly, lung inflammation and pathology were increased in mice deficient in NE and/or CatG. These results reveal that NSPs contribute to innate defenses against SARS-CoV-2 infection via proteolytic inactivation of the S protein and that NE and CatG limit lung inflammation in vivo. We conclude that therapeutic interventions aiming to reduce the activity of NSPs may interfere with viral clearance and inflammation in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , SARS-CoV-2/metabolismo , Neutrófilos/metabolismo , Glicoproteína da Espícula de Coronavírus , Inflamação , Serina Proteases/metabolismo
2.
Nat Commun ; 13(1): 5929, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207334

RESUMO

Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Furões , Humanos , Melfalan , Camundongos , Fenótipo , RNA Mensageiro , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , gama-Globulinas
3.
Vet Res ; 53(1): 57, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804440

RESUMO

Peste des petits ruminants (PPR) is an acute disease of small ruminants caused by a morbillivirus. Clinical observation of the disease in the field revealed that several species of small ruminants are affected to varying degrees. This difference in disease-related effects could depend either on the host or on the virulence of the virus strain. A previous study highlighted the difference in virulence between two strains of PPRV used to infect Saanen goats. For this breed, PPRV Morocco 2008 strain (MA08) was highly virulent while PPRV Côte d'Ivoire 1989 (IC89) strain induced mild disease. Experimental studies generally based on healthy and young animals do not permit exploration of the natural variability of the host susceptibility to PPRV. Therefore, building on the previous study on Saanen goats, the current study focussed on this breed of goat and used commercially available animals with an unknown history of infection with other pathogens. Results confirmed the previous disease pattern for PPRV IC89 and MA08 strains. Viral RNA detection, macroscopic and histological lesions were stronger for the highly virulent MA08 strain. We show here for the first time that viral RNA can be detected in the tissues of vaccinated animals. Viral RNA was also detected for the first time in serum samples, which is in agreement with the role of circulating immune cells in transporting the virus into host target organs. Thus, this study provides insight into the pathogenesis of strains of different virulence of PPRV and will help to better understand the onset of the disease.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Doenças das Cabras/virologia , Cabras , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , RNA Viral/genética , Virulência/genética
4.
Nature ; 602(7896): 307-313, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937050

RESUMO

Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models-the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Replicação Viral , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Animais de Laboratório/virologia , COVID-19/veterinária , Cricetinae , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Furões/virologia , Humanos , Masculino , Mesocricetus/virologia , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência/genética
5.
Microb Genom ; 6(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33295863

RESUMO

Environmental factors, such as cigarette smoking or lung infections, may influence chronic obstructive pulmonary disease (COPD) progression by modifying the respiratory tract microbiome. However, whether the disease itself induces or maintains dysbiosis remains undefined. In this longitudinal study, we investigated the oropharyngeal microbiota composition and disease progression of mice (in cages of 5-10 mice per cage) before, during and up to 3 months after chronic cigarette smoke exposure or exposure to room air for 6 months. Cigarette smoke exposure induced pulmonary emphysema measurable at the end of exposure for 6 months, as well as 3 months following smoke exposure cessation. Using both classical culture methods and 16S rRNA sequencing, we observed that cigarette smoke exposure altered the relative composition of the oropharyngeal microbiota and reduced its diversity (P <0.001). More than 60 taxa were substantially reduced after 6 months of smoke exposure (P <0.001) However, oropharyngeal microbiota disordering was reversed 3 months after smoke exposure cessation and no significant difference was observed compared to age-matched control mice. The effects of lung infection with Streptococcus pneumoniae on established smoke-induced emphysema and on the oropharyngeal microbiota were also evaluated. Inoculation with S. pneumoniae induced lung damage and altered the microbiota composition for a longer time compared to control groups infected but not previously exposed to smoke (P=0.01). Our data demonstrate effects of cigarette smoke and pneumococcus infection leading to altered microbiota and emphysema development. The reversal of the disordering of the microbiota composition, but not lung damage, following smoke exposure cessation and after clearance of infection suggest that changes in lung structure are not sufficient to sustain a disordered microbiota in mice. Whether changes in the airway microbiota contribute to inducing emphysema requires further investigation.


Assuntos
Bactérias/classificação , Disbiose/etiologia , Orofaringe/microbiologia , Infecções Pneumocócicas/microbiologia , Enfisema Pulmonar/genética , RNA Ribossômico 16S/genética , Fumaça/efeitos adversos , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , DNA Ribossômico/genética , Modelos Animais de Doenças , Progressão da Doença , Disbiose/induzido quimicamente , Disbiose/complicações , Disbiose/microbiologia , Feminino , Estudos Longitudinais , Camundongos , Filogenia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/microbiologia , RNA Bacteriano/genética , Análise de Sequência de DNA/métodos , Produtos do Tabaco/efeitos adversos
6.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901861

RESUMO

Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults leading to severe disability. Besides genetic traits, environmental factors contribute to MS pathogenesis. Cigarette smoking increases the risk of MS in an HLA-dependent fashion, but the underlying mechanisms remain unknown. Here, we explored the effect of cigarette smoke exposure on spontaneous and induced models of experimental autoimmune encephalomyelitis (EAE) by evaluating clinical disease and, when relevant, blood leukocytes and histopathology. In the relapsing-remitting (RR) transgenic model in SJL/J mice, we observed very low incidence in both smoke-exposed and control groups. In the optico-spinal encephalomyelitis (OSE) double transgenic model in C57BL/6 mice, the early onset of EAE prevented a meaningful evaluation of the effects of cigarette smoke. In EAE models induced by immunization, daily exposure to cigarette smoke caused a delayed onset of EAE followed by a protracted disease course in SJL/J mice. In contrast, cigarette smoke exposure ameliorated the EAE clinical score in C57BL/6J mice. Our exploratory studies therefore show that genetic background influences the effects of cigarette smoke on autoimmune neuroinflammation. Importantly, our findings expose the challenge of identifying an animal model for studying the influence of cigarette smoke in MS.


Assuntos
Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/etiologia , Patrimônio Genético , Fumar/efeitos adversos , Idade de Início , Animais , Biópsia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/metabolismo , Imuno-Histoquímica , Camundongos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Fenótipo , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Medula Espinal/metabolismo , Medula Espinal/patologia
7.
Genome Res ; 26(11): 1505-1519, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650846

RESUMO

Cell lineages, which shape the body architecture and specify cell functions, derive from the integration of a plethora of cell intrinsic and extrinsic signals. These signals trigger a multiplicity of decisions at several levels to modulate the activity of dynamic gene regulatory networks (GRNs), which ensure both general and cell-specific functions within a given lineage, thereby establishing cell fates. Significant knowledge about these events and the involved key drivers comes from homogeneous cell differentiation models. Even a single chemical trigger, such as the morphogen all-trans retinoic acid (RA), can induce the complex network of gene-regulatory decisions that matures a stem/precursor cell to a particular step within a given lineage. Here we have dissected the GRNs involved in the RA-induced neuronal or endodermal cell fate specification by integrating dynamic RXRA binding, chromatin accessibility, epigenetic promoter epigenetic status, and the transcriptional activity inferred from RNA polymerase II mapping and transcription profiling. Our data reveal how RA induces a network of transcription factors (TFs), which direct the temporal organization of cognate GRNs, thereby driving neuronal/endodermal cell fate specification. Modeling signal transduction propagation using the reconstructed GRNs indicated critical TFs for neuronal cell fate specification, which were confirmed by CRISPR/Cas9-mediated genome editing. Overall, this study demonstrates that a systems view of cell fate specification combined with computational signal transduction models provides the necessary insight in cellular plasticity for cell fate engineering. The present integrated approach can be used to monitor the in vitro capacity of (engineered) cells/tissues to establish cell lineages for regenerative medicine.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Neurogênese , Animais , Linhagem Celular Tumoral , Linhagem da Célula , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Endoderma/citologia , Epigênese Genética , Camundongos , Ativação Transcricional , Tretinoína/farmacologia
8.
EMBO Rep ; 13(11): 1012-20, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22964757

RESUMO

Adipose tissue is the largest compartment in the mammalian body for storing energy as fat, providing an important reservoir of fuel for maintaining whole body energy homeostasis. Herein, we identify the transcriptional cofactor hairless (HR) to be required for white adipogenesis. Moreover, forced expression of HR in non-adipogenic precursor cells induces adipogenic gene expression and enhances adipocyte formation under permissive conditions. HR exerts its proadipogenic effects by regulating the expression of PPARγ, one of the central adipogenic transcription factors. In conclusion, our data provide a new mechanism required for white adipogenesis.


Assuntos
Adipócitos Brancos/citologia , Adipogenia/genética , Regulação da Expressão Gênica no Desenvolvimento , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Adipócitos Brancos/metabolismo , Animais , Diferenciação Celular , Camundongos , Camundongos Knockout , Mutação , PPAR gama/genética , Fatores de Transcrição/genética , Transcrição Gênica
9.
Am J Surg Pathol ; 31(10): 1534-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17895754

RESUMO

Over the last 10 years, 240 cases of hyperplasic lymphadenitis have been systematically tested in our institution for the presence of the human immunodeficiency virus (HIV). This series comprised patients between 15 and 90 years (median of age: 38.51) without a past history of HIV infection. The technical approach consisted in an immunohistochemical procedure with a monoclonal antibody against the p24-gag protein of HIV. Among the 240 cases, 105 had a true follicular hyperplasia. Overall, this survey found that 4 cases (3 males and 1 female) were positive for p24-gag without previous knowledge of HIV infection (4/240=1.66%). HIV infection was further confirmed by serologic and molecular investigations in all cases. These results were seen exclusively in those cases with prominent follicular hyperplasia (4/105=3.80%). Staining with the anti-p24 antibody was intense and restricted to the follicular dendritic cell networks. In one case, beside hyperplasic germinal centers, one could see a regressed onion bulblike structure. One important conclusion can be drawn from this study. A systematic research of HIV proteins should be performed in all lymph node biopsies with marked follicular hyperplasia, in a context of polyadenopathy, fever, and general status alteration. Besides giving an accurate diagnosis, this approach may be helpful in cases of recent infection in which anti-p24 antibodies are not yet detectable in the serum.


Assuntos
Infecções por HIV/diagnóstico , HIV/isolamento & purificação , Linfonodos/patologia , Pseudolinfoma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Feminino , HIV/imunologia , Proteína do Núcleo p24 do HIV/análise , Infecções por HIV/virologia , Humanos , Imuno-Histoquímica , Linfonodos/virologia , Masculino , Pessoa de Meia-Idade , Pseudolinfoma/virologia
10.
J Infect ; 53(2): e65-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16313966

RESUMO

Clonal immunoglobulin and T-cell receptor gene rearrangements are useful in distinguishing reactive lymphoproliferations from neoplastic processes. Here, we report a case of transient clonal expansion of CD8+ CD57- T-large granular lymphocytes (T-LGL) during primary cytomegalovirus infection. This case underlines that clonal expansion of T-LGL could be a reactive phenomenon related to an acute infectious disease and is not specific for lymphoid malignancy.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Células Clonais/citologia , Infecções por Citomegalovirus/imunologia , Divisão Celular , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...