Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264163

RESUMO

BackgroundEmerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. MethodsIn a prospective cohort of 165 SARS-CoV-2 naive health care workers, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. FindingsFour weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of BNT162b2 and mRNA-1273 (geometric mean titers (GMT) of 197 [95% CI 149-260] and 313 [95% CI 218-448], respectively), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 26 [95% CI 18-37] and 14 [95% CI 8-25] IU/ml, respectively). These findings were robust for adjustment to age and sex. VOCs neutralization was reduced in all vaccine groups, with the largest (9- to 80-fold) reduction in neutralization observed against the Omicron variant. The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. Study limitations include the lack of cellular immunity data. ConclusionsOverall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-190140

RESUMO

For yet unknown reasons, severely ill COVID-19 patients often become critically ill around the time of activation of adaptive immunity. Here, we show that anti-Spike IgG from serum of severely ill COVID-19 patients induces a hyper-inflammatory response by human macrophages, which subsequently breaks pulmonary endothelial barrier integrity and induces microvascular thrombosis. The excessive inflammatory capacity of this anti-Spike IgG is related to glycosylation changes in the IgG Fc tail. Moreover, the hyper-inflammatory response induced by anti-Spike IgG can be specifically counteracted in vitro by use of the active component of fostamatinib, an FDA- and EMA-approved therapeutic small molecule inhibitor of Syk. One sentence summaryAnti-Spike IgG promotes hyper-inflammation.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-088716

RESUMO

The rapid spread of SARS-CoV-2 has a significant impact on global health, travel and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated neutralizing antibodies from convalescent COVID-19 patients using a SARS-CoV-2 stabilized prefusion spike protein. Several of these antibodies were able to potently inhibit live SARS-CoV-2 infection at concentrations as low as 0.007 {micro}g/mL, making them the most potent human SARS-CoV-2 antibodies described to date. Mapping studies revealed that the SARS-CoV-2 spike protein contained multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as previously undefined non-RBD epitopes. In addition to providing guidance for vaccine design, these mAbs are promising candidates for treatment and prevention of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...