Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
JHEP Rep ; 6(5): 101038, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694959

RESUMO

Background & Aims: Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods: Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results: The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions: The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications: Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.

3.
J Immunother Cancer ; 11(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040419

RESUMO

BACKGROUND: CD1d is a monomorphic major histocompatibility complex class I-like molecule that presents lipid antigens to distinct T-cell subsets and can be expressed by various malignancies. Antibody-mediated targeting of CD1d on multiple myeloma cells was reported to induce apoptosis and could therefore constitute a novel therapeutic approach. METHODS: To determine how a CD1d-specific single-domain antibody (VHH) enhances binding of the early apoptosis marker annexin V to CD1d+ tumor cells we use in vitro cell-based assays and CRISPR-Cas9-mediated gene editing, and to determine the structure of the VHH1D17-CD1d(endogenous lipid) complex we use X-ray crystallography. RESULTS: Anti-CD1d VHH1D17 strongly enhances annexin V binding to CD1d+ tumor cells but this does not reflect induction of apoptosis. Instead, we show that VHH1D17 enhances presentation of phosphatidylserine (PS) in CD1d and that this is saposin dependent. The crystal structure of the VHH1D17-CD1d(endogenous lipid) complex demonstrates that VHH1D17 binds the A'-pocket of CD1d, leaving the lipid headgroup solvent exposed, and has an electro-negatively charged patch which could be involved in the enhanced PS presentation by CD1d. Presentation of PS in CD1d does not trigger phagocytosis but leads to greatly enhanced binding of T-cell immunoglobulin and mucin domain containing molecules (TIM)-1 to TIM-3, TIM-4 and induces TIM-3 signaling. CONCLUSION: Our findings reveal the existence of an immune modulatory CD1d(PS)-TIM axis with potentially unexpected implications for immune regulation in both physiological and pathological conditions.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Anticorpos de Domínio Único , Humanos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Anticorpos de Domínio Único/metabolismo , Fosfatidilserinas/metabolismo , Anexina A5 , Subpopulações de Linfócitos T
4.
EBioMedicine ; 98: 104878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016322

RESUMO

BACKGROUND: SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS: 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 µg, N = 32), mRNA vaccine (10, 20, or 50 µg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS: govNCT05272605. FINDINGS: No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION: There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING: Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Austrália , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas de mRNA , SARS-CoV-2 , Adolescente , Adulto Jovem , Pessoa de Meia-Idade
6.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749325

RESUMO

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Assuntos
Linfócitos T CD8-Positivos , Longevidade , Recém-Nascido , Humanos , Idoso , Epitopos de Linfócito T/genética , Linfócitos T Citotóxicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética
7.
Chem Sci ; 14(29): 7887-7896, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502334

RESUMO

Natural Killer T (NKT) cells are a lipid-antigen reactive T cell subset that is restricted to the antigen presenting molecule CD1d. They possess diverse functional properties that contribute to inflammatory and regulatory immune responses. The most studied lipid antigen target for these T cells is α-galactosylceramide (αGC). The commensal organism Bacteroides fragilis (B. fragilis) produces several forms of αGC, but conflicting information exists about the influence of these lipids on NKT cells. Herein, we report the total synthesis of a major form of αGC from B. fragilis (Bf αGC), and several analogues thereof. We confirm the T cell receptor (TCR)-mediated recognition of these glycolipids by mouse and human NKT cells. Despite the natural structure of Bf αGC containing lipid branching that limits potency, we demonstrate that Bf αGC drives mouse NKT cells to proliferate and differentiate into producers of the immunoregulatory cytokine, interleukin-10 (IL-10). These Bf αGC-experienced NKT cells display regulatory function by inhibiting the expansion of naïve NKT cells upon subsequent exposure to this antigen. Moreover, this regulatory activity impacts more than just NKT cells, as demonstrated by the NKT cell-mediated inhibition of antigen-stimulated mucosal-associated invariant T (MAIT) cells (a T cell subset restricted to a different antigen presenting molecule, MR1). These findings reveal that B. fragilis-derived NKT cell agonists may have broad immunoregulatory activity, providing insight into the mechanisms influencing immune tolerance to commensal bacteria and highlighting a potential means to manipulate NKT cell function for therapeutic benefit.

8.
Med Microbiol Immunol ; 212(4): 291-305, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477828

RESUMO

Emerging SARS-CoV-2 variants, notably Omicron, continue to remain a formidable challenge to worldwide public health. The SARS-CoV-2 receptor-binding domain (RBD) is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. Here, we comprehensively investigated the impact of RBD mutations, including 5 variants of concern (VOC) or interest-including Omicron (BA.2)-and 33 common point mutations, both on IgG recognition and ACE2-binding inhibition, as well as FcγRIIa- and FcγRIIIa-binding antibodies, in plasma from two-dose BNT162b2-vaccine recipients and mild-COVID-19 convalescent subjects obtained during the first wave using a custom-designed bead-based 39-plex array. IgG-recognition and FcγR-binding antibodies were decreased against the RBD of Beta and Omicron, as well as point mutation G446S, found in several Omicron sub-variants as compared to wild type. Notably, while there was a profound decrease in ACE2 inhibition against Omicron, FcγR-binding antibodies were less affected, suggesting that Fc functional antibody responses may be better retained against the RBD of Omicron in comparison to neutralization. Furthermore, while measurement of RBD-ACE2-binding affinity via biolayer interferometry showed that all VOC RBDs have enhanced affinity to human ACE2, we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695) has reduced affinity to VOCs, while K26R (rs4646116) and S19P (rs73635825) have increased binding kinetics to the RBD of VOCs, potentially affecting virus-host interaction and, thereby, host susceptibility. Collectively, our findings provide in-depth coverage of the impact of RBD mutations on key facets of host-virus interactions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Vacina BNT162 , Imunoglobulina G , Mutação , Receptores de IgG , SARS-CoV-2/genética
9.
Front Microbiol ; 14: 1065609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350788

RESUMO

The development of virus-like particle (VLP) based vaccines for human papillomavirus, hepatitis B and hepatitis E viruses represented a breakthrough in vaccine development. However, for dengue and COVID-19, technical complications, such as an incomplete understanding of the requirements for protective immunity, but also limitations in processes to manufacture VLP vaccines for enveloped viruses to large scale, have hampered VLP vaccine development. Selecting the right adjuvant is also an important consideration to ensure that a VLP vaccine induces protective antibody and T cell responses. For diseases like COVID-19 and dengue fever caused by RNA viruses that exist as families of viral variants with the potential to escape vaccine-induced immunity, the development of more efficacious vaccines is also necessary. Here, we describe the development and characterisation of novel VLP vaccine candidates using SARS-CoV-2 and dengue virus (DENV), containing the major viral structural proteins, as protypes for a novel approach to produce VLP vaccines. The VLPs were characterised by Western immunoblot, enzyme immunoassay, electron and atomic force microscopy, and in vitro and in vivo immunogenicity studies. Microscopy techniques showed proteins self-assemble to form VLPs authentic to native viruses. The inclusion of the glycolipid adjuvant, α-galactosylceramide (α-GalCer) in the vaccine formulation led to high levels of natural killer T (NKT) cell stimulation in vitro, and strong antibody and memory CD8+ T cell responses in vivo, demonstrated with SARS-CoV-2, hepatitis C virus (HCV) and DEN VLPs. This study shows our unique vaccine formulation presents a promising, and much needed, new vaccine platform in the fight against infections caused by enveloped RNA viruses.

10.
EBioMedicine ; 92: 104574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148585

RESUMO

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Assuntos
COVID-19 , Proteínas de Transporte , Cricetinae , Humanos , Camundongos , Ratos , Animais , Vacinas contra COVID-19 , SARS-CoV-2 , Subunidades Proteicas , COVID-19/prevenção & controle , Austrália , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais
11.
Mucosal Immunol ; 16(4): 446-461, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37182737

RESUMO

Mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, and γδT cells are collectively referred to as 'unconventional T cells' due to their recognition of non-peptide antigens and restriction to MHC-I-like molecules. However, the factors controlling their widely variable frequencies between individuals and organs are poorly understood. We demonstrated that MAIT cells are increased in NKT or γδT cell-deficient mice and highly expand in mice lacking both cell types. TCRα repertoire analysis of γδT cell-deficient thymocytes revealed altered Trav segment usage relative to wild-type thymocytes, highlighting retention of the Tcra-Tcrd locus from the 129 mouse strain used to generate Tcrd-/- mice. This resulted in a moderate increase in distal Trav segment usage, including Trav1, potentially contributing to increased generation of Trav1-Traj33+ MAIT cells in the Tcrd-/- thymus. Importantly, adoptively transferred MAIT cells underwent increased homeostatic proliferation within NKT/gdT cell-deficient tissues, with MAIT cell subsets exhibiting tissue-specific homing patterns. Our data reveal a shared niche for unconventional T cells, where competition for common factors may be exploited to collectively modulate these cells in the immune response. Lastly, our findings emphasise careful assessment of studies using NKT or γδT cell-deficient mice when investigating the role of unconventional T cells in disease.


Assuntos
Células T Invariantes Associadas à Mucosa , Células T Matadoras Naturais , Camundongos , Animais , Receptores de Antígenos de Linfócitos T alfa-beta , Timo , Receptores de Antígenos de Linfócitos T gama-delta
12.
Infect Immun ; 91(5): e0055822, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37039653

RESUMO

Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.


Assuntos
Antirretrovirais , Modelos Animais de Doenças , Macaca , Mycobacterium tuberculosis , Vírus da Imunodeficiência Símia , Tuberculose , Humanos , Pré-Escolar , Criança , Animais , Tuberculose/complicações , Tuberculose/imunologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/imunologia , Antirretrovirais/administração & dosagem , Mycobacterium tuberculosis/fisiologia
13.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036008

RESUMO

Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.


Assuntos
COVID-19 , Gravidez , Feminino , Humanos , SARS-CoV-2 , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Anticorpos
14.
Immunobiology ; 228(3): 152380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031606

RESUMO

Inflammation and lipid regulator with UBA-like and NBR1-like domains (ILRUN) is a protein-encoding gene associated with innate immune signaling, lipid metabolism and cancer. In the context of innate immunity, ILRUN inhibits IRF3-mediated transcription of antimicrobial and proinflammatory cytokines by inducing degradation of the transcriptional coactivators CBP and p300. There remains a paucity of information, however, regarding the innate immune roles of ILRUN beyond in vitro analyses. To address this, we utilize a knockout mouse model to investigate the effect of ILRUN on cytokine expression in splenocytes and on the development of immune cell populations in the spleen and thymus. We show elevated production of tumor necrosis factor and interleukin-6 cytokines in ILRUN-deficient splenocytes following stimulation with the innate immune ligands polyinosinic:polycytidylic acid or lipopolysaccharide. Differences were also observed in the populations of several T cell subsets, including regulatory, mucosal-associated invariant and natural killer. These data identify novel functions for ILRUN in the development of certain immune cell populations and support previous in vitro findings that ILRUN negatively regulates the synthesis of pathogen-stimulated cytokines. This establishes the ILRUN knockout mouse model as a valuable resource for further study of the functions of ILRUN in health and disease.


Assuntos
Citocinas , Subpopulações de Linfócitos T , Camundongos , Animais , Citocinas/metabolismo , Imunidade Inata , Fatores Imunológicos/metabolismo , Adjuvantes Imunológicos/metabolismo , Camundongos Knockout
15.
Clin Transl Immunology ; 11(10): e1424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299410

RESUMO

Objectives: Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. Methods: Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. Results: Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. Conclusion: Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.

16.
iScience ; 25(11): 105259, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36213007

RESUMO

The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.

17.
Front Immunol ; 13: 914167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911696

RESUMO

Our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination has progressed considerably since the COVID-19 pandemic was first declared on the 11th of March in 2020. Recovery from infection is associated with the development of protective immune responses, although over time these become less effective against new emerging SARS-CoV-2 variants. Consequently, reinfection with SARS-CoV-2 variants is not infrequent and has contributed to the ongoing pandemic. COVID-19 vaccines have had a tremendous impact on reducing infection and particularly the number of deaths associated with SARS-CoV-2 infection. However, waning of vaccine induced immunity plus the emergence of new variants has necessitated the use of boosters to maintain the benefits of vaccination in reducing COVID-19 associated deaths. Boosting is also beneficial for individuals who have recovered from COVID-19 and developed natural immunity, also enhancing responses immune responses to SARS-CoV-2 variants. This review summarizes our understanding of the immune responses that follow SARS-CoV-2 infection and vaccination, the risks of reinfection with emerging variants and the very important protective role vaccine boosting plays in both vaccinated and previously infected individuals.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade , Pandemias , RNA Viral , Reinfecção/prevenção & controle , SARS-CoV-2
18.
Front Immunol ; 13: 889372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967361

RESUMO

Joining a function-enhanced Fc-portion of human IgG to the SARS-CoV-2 entry receptor ACE2 produces an antiviral decoy with strain transcending virus neutralizing activity. SARS-CoV-2 neutralization and Fc-effector functions of ACE2-Fc decoy proteins, formatted with or without the ACE2 collectrin domain, were optimized by Fc-modification. The different Fc-modifications resulted in distinct effects on neutralization and effector functions. H429Y, a point mutation outside the binding sites for FcγRs or complement caused non-covalent oligomerization of the ACE2-Fc decoy proteins, abrogated FcγR interaction and enhanced SARS-CoV-2 neutralization. Another Fc mutation, H429F did not improve virus neutralization but resulted in increased C5b-C9 fixation and transformed ACE2-Fc to a potent mediator of complement-dependent cytotoxicity (CDC) against SARS-CoV-2 spike (S) expressing cells. Furthermore, modification of the Fc-glycan enhanced cell activation via FcγRIIIa. These different immune profiles demonstrate the capacity of Fc-based agents to be engineered to optimize different mechanisms of protection for SARS-CoV-2 and potentially other viral pathogens.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Peptidil Dipeptidase A/metabolismo , RNA Viral , SARS-CoV-2
19.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36018322

RESUMO

Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αß coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αß enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αß act as functional coreceptors for MAIT and other MR1-reactive T cells.


Assuntos
Células T Invariantes Associadas à Mucosa , Receptores de Antígenos de Linfócitos T alfa-beta , Antígenos , Antígenos CD8 , Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Menor
20.
RSC Adv ; 12(29): 18493-18500, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799937

RESUMO

Isoglobotrihexosylceramide (iGb3) is a known NKT cell agonist, however the specific interactions required to trigger NKT cell TCR activation in response to this mammalian glycolipid are not fully understood. Here we report the synthesis of 1,3-ß-Gal-LacCer (ßG-iGb3) that displays a ß-linked terminal sugar. ßG-iGb3 activated NKT cells to a similar extent as iGb3 with a terminal α-linkage, indicating that the conformation of the terminal sugar residue of iGb3 is not essential to facilitate NKT cell TCR recognition. In addition, the immunological activity of four recently described iGb3 analogues with modifications to their terminal sugar or lipid backbone were also investigated. These iGb3 analogues all induced NKT cell proliferation, with IL-13 the predominate cytokine detected. This highlights the ability of the NKT cell TCR to accommodate variations in iGb3-based glycolipids and suggests that undiscovered NKT cell ligands may exist within the lacto-series of mammalian glycosphingolipids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...