Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 225(6): 2314-2330, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31808954

RESUMO

Parenchyma cells in the xylem store nonstructural carbohydrates (NSC), providing reserves of energy that fuel woody perennials through periods of stress and/or limitations to photosynthesis. If the capacity for storage is subject to selection, then the fraction of wood occupied by living parenchyma should increase towards stressful environments. Ray parenchyma fraction (RPF) and seasonal NSC dynamics were quantified for 12 conifers and three oaks along a transect spanning warm dry foothills (500 m above sea level) to cold wet treeline (3250 m asl) in California's central Sierra Nevada. Mean RPF was lower for both conifer and oak species with warmer dryer ranges. RPF variability increased with elevation or in relation to associated climatic variables in conifers - treeline-dominant Pinus albicaulis had the lowest mean RPF measured (c. 3.7%), but the highest environmentally standardized variability index. Conifer RPF variability was explained by environment, increasing predominantly towards cooler wetter range edges. In oaks, NSC was explained by environment - values increasing for evergreen and decreasing for deciduous oaks with elevation. Lastly, all species surveyed appear to prioritize filling available RPF with sugar to achieve molarities that balance reasonable tensions over starch to maximize stored carbon. RPF responds to environment but is unlikely to spatially constrain NSC storage.


Assuntos
Pinus , Árvores , Metabolismo dos Carboidratos , Carboidratos , Xilema
2.
Tree Physiol ; 39(8): 1484-1498, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095335

RESUMO

Working in tandem with root exclusion, stems may provide salt-tolerant woody perennials with some additional capacity to restrict sodium (Na) and chloride (Cl) accumulation in leaves. The Pistacia genus, falling at the nexus of salt tolerance and human intervention, provided an ideal set of organisms for studying the influences of both variable root exclusion and potentially variable discontinuities at the bud union on stem processes. In three experiments covering a wide range of salt concentrations (0 to 150 mM NaCl) and tree ages (1, 2 and 10 years) as well as nine rootstock-scion combinations we show that proportional exclusion of both Na and Cl reached up to ~85% efficacy, but efficacy varied by both rootstock and budding treatment. Effective Na exclusion was augmented by significant retrieval of Na from the xylem sap, as evidenced by declines in the Na concentrations of both sap and wood tissue along the transpiration stream. However, while we observed little to no differences between the concentrations of the two ions in leaves, analogous declines in sap concentrations of Cl were not observed. We conclude that some parallel but separate mechanism must be acting on Cl to provide leaf protection from toxicity specific to this ion and suggest that this mechanism is recirculation of Cl in the phloem. The presented findings underline the importance of holistic assessments of salt tolerance in woody perennials. In particular, greater emphasis might be placed on the dynamics of salt sequestration in the significant storage volumes offered by the stems of woody perennials and on the potential for phloem discontinuity introduced with a bud/graft union.


Assuntos
Floema , Pistacia , Íons , Folhas de Planta , Raízes de Plantas , Salinidade , Sódio , Árvores , Xilema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...