Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10376, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710721

RESUMO

Silicon carbide (SiC) has outstanding physical properties therefore, diodes based on SiC are being considered for many radiation detection applications such as particle accelerator experiments and medical dosimetry. Moreover, by reducing the metal on the surface of the diode there is the potential to enhance its performance in some fields where the presence of metal is detrimental. To this end, SiC detectors with an epitaxially-grown graphene layer (EG), that substitutes the metallic contact, in the sensitive region were produced at IMB-CNM, profiting from the conductivity of the mono-atomic layer material. To isolate the effect of the graphene on the charge collection, samples without graphene were produced in parallel. In this paper, the effect of EG on Silicon Carbide p-in-n radiation detectors is studied in terms of charge collection with a radioactive source and by means of the transient current technique (TCT), which allows for position-dependent signal formation analysis. As a result of the former, we show the capability of the EG-SiC sensor for charge collection after signal integration, to a resolution close to that of a sensor fully metallised. Moreover, from the TCT studies, we observe uniform charge collection across the active region, as well as an up-to ∼ 40% transient amplitude damping which, compared with the ∼ 90% on the sample containing no metallic contact, proves that the presence of graphene benefits the performance of the device and that the technology is viable for radiation detection as an alternative to metal.

2.
Phys Med Biol ; 69(9)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38530300

RESUMO

Objective.The successful implementation of FLASH radiotherapy in clinical settings, with typical dose rates >40 Gy s-1, requires accurate real-time dosimetry.Approach.Silicon carbide (SiC) p-n diode dosimeters designed for the stringent requirements of FLASH radiotherapy have been fabricated and characterized in an ultra-high pulse dose rate electron beam. The circular SiC PiN diodes were fabricated at IMB-CNM (CSIC) in 3µm epitaxial 4H-SiC. Their characterization was performed in PTB's ultra-high pulse dose rate reference electron beam. The SiC diode was operated without external bias voltage. The linearity of the diode response was investigated up to doses per pulse (DPP) of 11 Gy and pulse durations ranging from 3 to 0.5µs. Percentage depth dose measurements were performed in ultra-high dose per pulse conditions. The effect of the total accumulated dose of 20 MeV electrons in the SiC diode sensitivity was evaluated. The temperature dependence of the response of the SiC diode was measured in the range 19 °C-38 °C. The temporal response of the diode was compared to the time-resolved beam current during each electron beam pulse. A diamond prototype detector (flashDiamond) and Alanine measurements were used for reference dosimetry.Main results.The SiC diode response was independent both of DPP and of pulse dose rate up to at least 11 Gy per pulse and 4 MGy s-1, respectively, with tolerable deviation for relative dosimetry (<3%). When measuring the percentage depth dose under ultra-high dose rate conditions, the SiC diode performed comparably well to the reference flashDiamond. The sensitivity reduction after 100 kGy accumulated dose was <2%. The SiC diode was able to follow the temporal structure of the 20 MeV electron beam even for irregular pulse estructures. The measured temperature coefficient was (-0.079 ± 0.005)%/°C.Significance.The results of this study demonstrate for the first time the suitability of silicon carbide diodes for relative dosimetry in ultra-high dose rate pulsed electron beams up to a DPP of 11 Gy per pulse.


Assuntos
Compostos Inorgânicos de Carbono , Dosímetros de Radiação , Radiometria , Radiometria/métodos , Compostos de Silício , Elétrons
3.
Small ; : e2308857, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072781

RESUMO

Graphene solution-gated field-effect transistors (gSGFETs) offer high potential for chemical and biochemical sensing applications. Among the current trends to improve this technology, the functionalization processes are gaining relevance for its crucial impact on biosensing performance. Previous efforts are focused on simplifying the attachment procedure from standard multi-step to single-step strategies, but they still suffer from overreaction, and impurity issues and are limited to a particular ligand. Herein, a novel strategy for single-step immobilization of chemically modified aptamers with fluorenylmethyl and acridine moieties, based on a straightforward synthetic route to overcome the aforementioned limitations is presented. This approach is benchmarked versus a standard multi-step strategy using thrombin as detection model. In order to assess the reliability of the functionalization strategies 48-gSGFETs arrays are employed to acquire large datasets with multiple replicas. Graphene surface characterization demonstrates robust and higher efficiency in the chemical coupling of the aptamers with the single-step strategy, while the electrical response evaluation validates the sensing capability, allowing to implement different alternatives for data analysis and reduce the sensing variability. In this work, a new tool capable of overcome the functionalization challenges of graphene surfaces is provided, paving the way toward the standardization of gSGFETs for biosensing purposes.

4.
Sensors (Basel) ; 21(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572603

RESUMO

A SiC Schottky dual-diode temperature-sensing element, suitable for both complementary variation of VF with absolute temperature (CTAT) and differential proportional to absolute temperature (PTAT) sensors, is demonstrated over 60-700 K, currently the widest range reported. The structure's layout places the two identical diodes in close, symmetrical proximity. A stable and high-barrier Schottky contact based on Ni, annealed at 750 °C, is used. XRD analysis evinced the even distribution of Ni2Si over the entire Schottky contact area. Forward measurements in the 60-700 K range indicate nearly identical characteristics for the dual-diodes, with only minor inhomogeneity. Our parallel diode (p-diode) model is used to parameterize experimental curves and evaluate sensing performances over this far-reaching domain. High sensitivity, upwards of 2.32 mV/K, is obtained, with satisfactory linearity (R2 reaching 99.80%) for the CTAT sensor, even down to 60 K. The PTAT differential version boasts increased linearity, up to 99.95%. The lower sensitivity is, in this case, compensated by using a high-performing, low-cost readout circuit, leading to a peak 14.91 mV/K, without influencing linearity.

5.
Front Neurosci ; 15: 811348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087375

RESUMO

In recent years, the quest for surface modifications to promote neuronal cell interfacing and modulation has risen. This course is justified by the requirements of emerging technological and medical approaches attempting to effectively interact with central nervous system cells, as in the case of brain-machine interfaces or neuroprosthetic. In that regard, the remarkable cytocompatibility and ease of chemical functionalization characterizing surface-immobilized graphene-based nanomaterials (GBNs) make them increasingly appealing for these purposes. Here, we compared the (morpho)mechanical and functional adaptation of rat primary hippocampal neurons when interfaced with surfaces covered with pristine single-layer graphene (pSLG) and phenylacetic acid-functionalized single-layer graphene (fSLG). Our results confirmed the intrinsic ability of glass-supported single-layer graphene to boost neuronal activity highlighting, conversely, the downturn inducible by the surface insertion of phenylacetic acid moieties. fSLG-interfaced neurons showed a significant reduction in spontaneous postsynaptic currents (PSCs), coupled to reduced cell stiffness and altered focal adhesion organization compared to control samples. Overall, we have here demonstrated that graphene substrates, both pristine and functionalized, could be alternatively used to intrinsically promote or depress neuronal activity in primary hippocampal cultures.

6.
Nat Mater ; 18(3): 280-288, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30598536

RESUMO

Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic.


Assuntos
Mapeamento Encefálico/instrumentação , Lobo Frontal/fisiologia , Grafite , Microtecnologia/instrumentação , Transistores Eletrônicos , Animais , Grafite/química , Microeletrodos , Modelos Moleculares , Conformação Molecular , Ratos
7.
Lab Chip ; 13(15): 2972-9, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23719742

RESUMO

Biofuel cells typically yield lower power and are more difficult to fabricate than conventional fuel cells using inorganic catalysts. This work presents a glucose/O2 microfluidic biofuel cell (MBFC) featuring pyrolyzed photoresist film (PPF) electrodes made on silicon wafers using a rapid thermal process, and subsequently encapsulated by rapid prototyping techniques into a double-Y-shaped microchannel made entirely of plastic. A ferrocenium-based polyethyleneimine polymer linked to glucose oxidase (GOx/Fc-C6-LPEI) was used in the anode, while the cathode contained a mixture of laccase, anthracene-modified multi-walled carbon nanotubes, and tetrabutylammonium bromide-modified Nafion (MWCNTs/laccase/TBAB-Nafion). The cell performance was studied under different flow-rates, obtaining a maximum open circuit voltage of 0.54 ± 0.04 V and a maximum current density of 290 ± 28 µA cm(-2) at room temperature under a flow rate of 70 µL min(-1) representing a maximum power density of 64 ± 5 µW cm(-2). Although there is room for improvement, this is the best performance reported to date for a bioelectrode-based microfluidic enzymatic biofuel cell, and its materials and fabrication are amenable to mass production.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/instrumentação , Glucose/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Oxigênio/metabolismo , Aspergillus niger/enzimologia , Eletrodos , Enzimas Imobilizadas/metabolismo , Desenho de Equipamento , Glucose Oxidase/metabolismo , Lacase/metabolismo , Trametes/enzimologia
8.
Nanoscale ; 4(19): 5917-23, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22899008

RESUMO

The combination of optimized and passivated Field Effect Transistors (FETs) based on carbon nanotubes (CNTs) together with the appropriate choice and immobilization strategy of aptamer receptors and buffer concentration have allowed the highly sensitive and real time biorecognition of proteins in a liquid-gated configuration. Specifically we have followed the biorecognition process of thrombin by its specific aptamer. The aptamer modified device is sensitive enough to capture a change in the electronic detection mechanism, one operating at low protein concentrations and the other in a higher target concentration range. The high sensitivity of the device is also sustained by the very low detection limits achieved (20 pM) and their high selectivity when other target proteins are used. Moreover, the experimental results have allowed us to quantify the equilibrium constant of the protein-aptamer binding and confirm its high affinity by using the Langmuir equation.


Assuntos
Aptâmeros de Nucleotídeos/química , Nanotubos de Carbono/química , Trombina/química , Transistores Eletrônicos , Mioglobina/química , Mioglobina/metabolismo , Elastase Pancreática/química , Elastase Pancreática/metabolismo , Trombina/metabolismo
9.
Nature ; 487(7405): 77-81, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22722861

RESUMO

The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons­coupled excitations of photons and charge carriers­in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short­more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light­matter interactions for quantum devices and biosensing applications.

10.
Nanoscale Res Lett ; 6: 478, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801347

RESUMO

Micro-Raman and micro-transmission imaging experiments have been done on epitaxial graphene grown on the C- and Si-faces of on-axis 6H-SiC substrates. On the C-face it is shown that the SiC sublimation process results in the growth of long and isolated graphene ribbons (up to 600 µm) that are strain-relaxed and lightly p-type doped. In this case, combining the results of micro-Raman spectroscopy with micro-transmission measurements, we were able to ascertain that uniform monolayer ribbons were grown and found also Bernal stacked and misoriented bilayer ribbons. On the Si-face, the situation is completely different. A full graphene coverage of the SiC surface is achieved but anisotropic growth still occurs, because of the step-bunched SiC surface reconstruction. While in the middle of reconstructed terraces thin graphene stacks (up to 5 layers) are grown, thicker graphene stripes appear at step edges. In both the cases, the strong interaction between the graphene layers and the underlying SiC substrate induces a high compressive thermal strain and n-type doping.

11.
Biomed Microdevices ; 8(1): 43-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16491330

RESUMO

Monitoring of ischemia in living tissues is a field of increasing interest in many clinical settings. In this work we report for the first time anywhere the development of needle-shaped, minimally-invasive impedance probes based on silicon carbide (SiC) substrates. An in-vitro comparison of these new devices with Si-based impedance probes demonstrates that their effective operation range extends up to the 100 kHz range, thus allowing a wide-spectrum multi-frequency analysis of impedance modulus and phase angle. Furthermore, we show that, when applied to in-vivo settings, this kind of analysis yields to an accurate monitoring of ischemia, while making possible the application of more robust mathematical methods for the study of impedance in living tissues.


Assuntos
Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , Impedância Elétrica , Eletrodos Implantados , Microeletrodos , Monitorização Fisiológica/instrumentação , Pletismografia de Impedância/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Masculino , Miniaturização , Monitorização Fisiológica/métodos , Pletismografia de Impedância/métodos , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...