Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 3(10): 744-52, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077718

RESUMO

RNA interference (RNAi) holds great promise as a strategy to further our understanding of gene function in the central nervous system (CNS) and as a therapeutic approach for neurological and neurodegenerative diseases. However, the potential for its use is hampered by the lack of siRNA delivery vectors which are both safe and highly efficient. Cyclodextrins have been shown to be efficient and low toxicity gene delivery vectors in various cell types in vitro. However, to date, they have not been exploited for delivery of oligonucleotides to neurons. To this end, a modified ß-cyclodextrin (CD) vector was synthesized, which complexed siRNA to form cationic nanoparticles of less than 200 nm in size. Furthermore, it conferred stability in serum to the siRNA cargo. The in vitro performance of the CD in both immortalized hypothalamic neurons and primary hippocampal neurons was evaluated. The CD facilitated high levels of intracellular delivery of labeled siRNA, while maintaining at least 80% cell viability. Significant gene knockdown was achieved, with a reduction in luciferase expression of up to 68% and a reduction in endogenous glyceraldehyde phosphate dehydrogenase (GAPDH) expression of up to 40%. To our knowledge, this is the first time that a modified CD has been used as a safe and efficacious vector for siRNA delivery into neuronal cells.


Assuntos
Química Click/métodos , Ciclodextrinas/química , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Neurônios/metabolismo , RNA Interferente Pequeno/genética , Animais , Células Cultivadas , Ciclodextrinas/administração & dosagem , Vetores Genéticos/administração & dosagem , Vetores Genéticos/metabolismo , Neurônios/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...