Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 7(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34356954

RESUMO

Scedosporium species are common fungal pathogens in patients with cystic fibrosis (CF). To colonize the CF lungs, fungi must cope with the host immune response, especially the reactive oxygen species (ROS) released by phagocytic cells. To this aim, pathogens have developed various antioxidant systems, including superoxide dismutases (SODs) which constitute the first-line protection against oxidative stress. Interestingly, one of the S. apiospermum SOD-encoding genes (SODD gene) exhibits a glycosylphosphatidylinositol (GPI) anchor-binding site and encodes a conidial-specific surface SOD. In this study, a SODDΔ mutant was engineered from a non-homologous end joining-deficient strain (KU70Δ) of S. apiospermum. Compared to its parent strain, the double mutant KU70Δ/SODDΔ exhibited increased susceptibility to various oxidizing agents and triazole antifungals. In addition, the loss of SodD resulted in an increased intracellular killing of the conidia by M1 macrophages derived from human blood monocytes, suggesting the involvement of this superoxide dismutase in the evasion to the host defenses. Nevertheless, one cannot disregard an indirect role of the enzyme in the synthesis or assembly of the cell wall components since transmission electron microscopic analysis revealed a thickening of the inner cell wall layer of the conidia. Further studies are needed to confirm the role of this enzyme in the pathogenesis of Scedosporium infections, including the production of a recombinant protein and study of its protective effect against the infection in a mouse model of scedosporiosis.

2.
Virulence ; 12(1): 1076-1090, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33825667

RESUMO

The slowing-down de novo drug-discovery emphasized the importance of repurposing old drugs. This is particularly true when combating infections caused by therapy-refractory microorganisms, such as Scedosporium species and Lomentospora prolificans. Recent studies on Scedosporium responses to oxidative stress underscored the importance of targeting the underlying mechanisms. Auranofin, ebselen, PX-12, honokiol, and to a lesser extent, conoidin A are known to disturb redox-homeostasis systems in many organisms. Their antifungal activity was assessed against 27 isolates belonging to the major Scedosporium species: S. apiospermum, S. aurantiacum, S. boydii, S. dehoogii, S. minutisporum, and Lomentospora prolificans. Auranofin and honokiol were the most active against all Scedosporium species (mean MIC50 values of 2.875 and 6.143 µg/ml, respectively) and against L. prolificans isolates (mean MIC50 values of 4.0 and 3.563µg/ml respectively). Combinations of auranofin with voriconazole or honokiol revealed additive effects against 9/27 and 18/27 isolates, respectively. Synergistic interaction between auranofin and honokiol was only found against one isolate of L. prolificans. The effects of auranofin upon exposure to oxidative stress were also investigated. For all species except S. dehoogii, the maximal growth in the presence of auranofin significantly decreased when adding a sublethal dose of menadione. The analysis of the expression of genes encoding oxidoreductase enzymes upon exposure of S. apiospermum to honokiol unveiled the upregulation of many genes, especially those coding peroxiredoxins, thioredoxin reductases, and glutaredoxins. Altogether, these data suggest that auranofin and honokiol act via dampening the redox balance and support their repurposing as antifungals against Scedosporium species and L. prolificans.


Assuntos
Scedosporium , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Auranofina/farmacologia , Compostos de Bifenilo , Reposicionamento de Medicamentos , Lignanas
4.
Med Mycol ; 57(3): 363-373, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29889264

RESUMO

Scedosporium species rank the second, after Aspergillus fumigatus, among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Development of microorganisms in the respiratory tract depends on their capacity to evade killing by the host immune system, particularly through the oxidative response of macrophages and neutrophils, with the release of reactive oxygen species (ROS) and reactive nitrogen species (RNS). This is particularly true in the airways of CF patients which display an exacerbated inflammatory reaction. To protect themselves, pathogens have developed various enzymatic antioxidant systems implicated in ROS degradation, including superoxide dismutases, catalases, cytochrome C peroxidases, chloroperoxidases and enzymes of the glutathione and thioredoxin systems, or in RNS degradation, that is, flavohemoglobins, nitrate reductases, and nitrite reductases. Here we investigated the transcriptional regulation of the enzymatic antioxidant gene battery in 24-h-old hyphae of Scedosporium apiospermum in response to oxidative stress induced chemically or by exposure to activated phagocytic cells. We showed that 21 out of the 33 genes potentially implicated in the oxidative or nitrosative stress response were overexpressed upon exposure of the fungus to various chemical oxidants, while they were only 13 in co-cultures with macrophages or neutrophils. Among them, genes encoding two thioredoxin reductases and to a lesser extent, a peroxiredoxin and one catalase were found to be overexpressed after chemical oxidative stress as well as in co-cultures. These results suggest that thioredoxin reductases, which are known to be virulence factors in other pathogenic fungi, play a key role in pathogenesis of scedosporiosis, and may be new drug targets.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo , Fagócitos/patologia , Scedosporium/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Catalase/genética , Perfilação da Expressão Gênica , Hifas/genética , Oxirredução , Fagócitos/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Scedosporium/enzimologia , Scedosporium/patogenicidade , Tiorredoxina Dissulfeto Redutase/genética
5.
Plant Physiol ; 177(4): 1473-1486, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29934299

RESUMO

Lochnericine is a major monoterpene indole alkaloid (MIA) in the roots of Madagascar periwinkle (Catharanthus roseus). Lochnericine is derived from the stereoselective C6,C7-epoxidation of tabersonine and can be metabolized further to generate other complex MIAs. While the enzymes responsible for its downstream modifications have been characterized, those involved in lochnericine biosynthesis remain unknown. By combining gene correlation studies, functional assays, and transient gene inactivation, we identified two highly conserved P450s that efficiently catalyze the epoxidation of tabersonine: tabersonine 6,7-epoxidase isoforms 1 and 2 (TEX1 and TEX2). Both proteins are quite divergent from the previously characterized tabersonine 2,3-epoxidase and are more closely related to tabersonine 16-hydroxylase, involved in vindoline biosynthesis in leaves. Biochemical characterization of TEX1/2 revealed their strict substrate specificity for tabersonine and their inability to epoxidize 19-hydroxytabersonine, indicating that they catalyze the first step in the pathway leading to hörhammericine production. TEX1 and TEX2 displayed complementary expression profiles, with TEX1 expressed mainly in roots and TEX2 in aerial organs. Our results suggest that TEX1 and TEX2 originated from a gene duplication event and later acquired divergent, organ-specific regulatory elements for lochnericine biosynthesis throughout the plant, as supported by the presence of lochnericine in flowers. Finally, through the sequential expression of TEX1 and up to four other MIA biosynthetic genes in yeast, we reconstituted the 19-acetylhörhammericine biosynthetic pathway and produced tailor-made MIAs by mixing enzymatic modules that are naturally spatially separated in the plant. These results lay the groundwork for the metabolic engineering of tabersonine/lochnericine derivatives of pharmaceutical interest.


Assuntos
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Catharanthus/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Engenharia Metabólica/métodos , Microrganismos Geneticamente Modificados , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina , Leveduras/genética , Leveduras/metabolismo
6.
J Pharmacol Exp Ther ; 365(2): 408-412, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29491040

RESUMO

Cerebral Scedosporium infections usually occur in lung transplant recipients as well as in immunocompetent patients in the context of near drowning. Voriconazole is the first-line treatment. The diffusion of voriconazole through the blood-brain barrier in the context of cerebral infection and cyclosporine administration is crucial and remains a matter of debate. To address this issue, the pharmacokinetics of voriconazole was assessed in the plasma, cerebrospinal fluid (CSF), and brain in an experimental model of cerebral scedosporiosis in rats receiving or not receiving cyclosporine. A single dose of voriconazole (30 mg/kg, i.v.) was administered to six groups of rats randomized according to the infection status and the cyclosporine dosing regimen (no cyclosporine, a single dose, or three doses; 15 mg/kg each). Voriconazole concentrations in plasma, CSF, and brain samples were quantified using ultra-performance liquid chromatography-tandem mass spectrometry and high-performance liquid chromatography UV methods and were documented up to 48 hours after administration. Pharmacokinetic parameters were estimated using a noncompartmental approach. Voriconazole pharmacokinetic profiles were similar for plasma, CSF, and brain in all groups studied. The voriconazole Cmax and area under the curve (AUC) (AUC0 ≥ 48 hours) values were significantly higher in plasma than in CSF [CSF/plasma ratio, median (range) = 0.5 (0.39-0.55) for AUC0 ≥ 48 hours and 0.47 (0.35 and 0.75) for Cmax]. Cyclosporine administration was significantly associated with an increase in voriconazole exposure in the plasma, CSF, and brain. In the plasma, but not in the brain, an interaction between the infection and cyclosporine administration reduced the positive impact of cyclosporine on voriconazole exposure. Together, these results emphasize the impact of cyclosporine on brain voriconazole exposure.


Assuntos
Ciclosporina/farmacologia , Micoses/tratamento farmacológico , Voriconazol/farmacocinética , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Masculino , Micoses/sangue , Micoses/líquido cefalorraquidiano , Micoses/metabolismo , Ratos , Ratos Sprague-Dawley , Scedosporium/fisiologia , Voriconazol/sangue , Voriconazol/líquido cefalorraquidiano , Voriconazol/uso terapêutico
7.
Arch Microbiol ; 200(3): 517-523, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29464281

RESUMO

Scedosporium species are opportunistic pathogens causing a great variety of infections in both immunocompetent and immunocompromised individuals. The Scedosporium genus ranks the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), after Aspergillus fumigatus, and most species are capable to chronically colonize the respiratory tract of these patients. Nevertheless, few data are available regarding evasion of the inhaled conidia to the host immune response. Upon microbial infection, macrophages and neutrophils release reactive oxygen species (ROS). To colonize the respiratory tract, the conidia need to germinate despite the oxidative stress generated by phagocytic cells. Germination of spores from different clinical or environmental isolates of the major Scedosporium species was investigated in oxidative stress conditions. All tested species showed susceptibility to oxidative stress. However, when comparing clinical and environmental isolates, differences in germination capabilities under oxidative stress conditions were seen between species as well as within each species. Among environmental isolates, Scedosporium aurantiacum isolates were the most resistant to oxidative stress whereas Scedosporium dehoogii were the most susceptible. Overall, the differences observed between Scedosporium species in the capacity to germinate under oxidative stress conditions could explain their varying prevalence and pathogenicity.


Assuntos
Estresse Oxidativo , Scedosporium/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Humanos , Oxidantes/farmacologia , Paraquat/farmacologia , Espécies Reativas de Oxigênio , Scedosporium/efeitos dos fármacos , Scedosporium/isolamento & purificação , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/isolamento & purificação , Vitamina K 3/farmacologia
8.
J Microbiol Methods ; 144: 152-156, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155237

RESUMO

We have developed a series of synthetic constructs suitable to genetically manipulate a broad range of yeast species belonging to the fungal CTG clade. This molecular toolbox notably allows heterologous gene expression, single or dual fluorescence labeling and construction of luciferase-expressing strains for bioluminescence imaging.


Assuntos
Códon , Engenharia Genética/métodos , Engenharia Genética/normas , Leveduras/genética , Fluorescência , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde , Luciferases , Medições Luminescentes/métodos , Medições Luminescentes/normas , Biologia Molecular/métodos , Coloração e Rotulagem , Transformação Genética , beta-Galactosidase
9.
Diagn Microbiol Infect Dis ; 89(4): 282-287, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28974395

RESUMO

Scedosporium species rank the second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), after Aspergillus fumigatus. In CF, these fungi may cause various respiratory infections similar to those caused by A. fumigatus, including bronchitis and allergic broncho-pulmonary mycoses. Diagnosis of these infections relies on the detection of serum antibodies using crude antigenic extracts. However, many components of these extracts are common to Scedosporium and Aspergillus species, leading to cross-reactions. Here, 5 recombinant proteins from S. apiospermum or S. boydii were produced, and their value in serodiagnosis of Scedosporium infections was investigated by enzyme-linked immunosorbent assay. Two of them, corresponding to the Scedosporium catalase A1 or cytosolic Cu,Zn-superoxyde dismutase, allowed the detection of Scedosporium infection, and the differentiation with an Aspergillus infection. These recombinant proteins therefore may serve as a basis for the development of a standardized serological test.


Assuntos
Fibrose Cística/microbiologia , Proteínas Fúngicas/análise , Micoses/diagnóstico , Proteínas Recombinantes/análise , Scedosporium/enzimologia , Testes Sorológicos , Anticorpos Antifúngicos/sangue , Antígenos de Fungos/sangue , Aspergillus fumigatus/isolamento & purificação , Catalase/análise , Humanos , Pichia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/análise
10.
Med Mycol ; 54(4): 409-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26486722

RESUMO

PURPOSE: The Scedosporium apiospermum species complex usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF), but little is known about the molecular epidemiology of the airway colonization. METHODS: Polymerase chain reaction (PCR) amplification of repetitive sequences (rep-PCR) was applied to the retrospective analysis of a panel of isolates already studied by random amplification of polymorphic DNA (RAPD) and comprising 63 isolates recovered from sputa from 9 CF patients. Results were compared to those obtained previously by RAPD, and herein by beta-tubulin (TUB) gene sequencing and Multilocus Sequence Typing (MLST). RESULTS: Within the panel of isolates studied,S. apiospermum sensu stricto and Scedosporium boydii, as expected, were the predominant species with 21 and 36 isolates, respectively. Four isolates from one patient were identified as Scedosporium aurantiacum, whereas two isolates belonged to the Pseudallescheria ellipsoidea subgroup of S. boydii rep-PCR analysis of these isolates clearly differentiated the three species and P. ellipsoidea isolates, whatever the rep-PCR kit used, and also permitted strain differentiation. When using the mold primer kit, results from rep-PCR were in close agreement with those obtained by MLST. For both S. apiospermum and S. boydii, 8 genotypes were differentiated by rep-PCR and MLST compared to 10 by RAPD. All S. aurantiacum isolates shared the same RAPD genotype and exhibited the same rep-PCR profile and sequence type. CONCLUSIONS: These results illustrate the efficacy of rep-PCR for both species identification within the S. apiospermum complex and genotyping for the two major species of this complex.Abstract presentation: Part of this work was presented during the 18th Congress of the International Society for Human and Animal Mycology, Berlin (Germany), June 2012.S. Giraud, C. Godon, A. Rougeron, J.P. Bouchara and L. Favennec are members of the ECMM/ISHAM working group on Fungal respiratory infections in Cystic Fibrosis(Fri-CF).


Assuntos
Tipagem Molecular/métodos , Micoses/microbiologia , Reação em Cadeia da Polimerase/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Scedosporium/genética , Fibrose Cística/microbiologia , Humanos , Filogenia , Scedosporium/classificação , Escarro/microbiologia
11.
J Pharmacol Exp Ther ; 345(2): 198-205, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23426955

RESUMO

Scedosporium apiospermum is a soil fungus which can cause severe and often fatal cerebral infections in both immunocompetent patients in the event of near drowning and immunosuppressed patients such as lung transplant recipients. Because of the low susceptibility of this fungus to antifungal drugs, and the low permeability of the blood-brain barrier (BBB), therapeutic drug monitoring is necessary to reach an effective tissue concentration with limited side effects. Indeed, diffusion of the drug in the brain is dependent on several parameters, such as the integrity of the BBB and the activity of efflux pumps. To evaluate drug diffusion, two experimental models were developed in immunocompetent and immunosuppressed rats. Inocula were administered via the penile vein and a clinical scale (0-9) was established, based on weight and clinical and neurologic signs evaluated by the tail suspension test. Cerebral involvement was confirmed by magnetic resonance imaging and histologic examination of brain sections after hematoxylin-eosin-safran or silver staining. Voriconazole or posaconazole was given to the rats at doses ranging from 10 to 75 mg/kg/day via i.v. or oral routes, respectively. Whatever the immune status, the effective doses (defined by a doubling of the survival time and the absence of neurologic sequelae) were 30 mg/kg/day for voriconazole and 50 mg/kg/day for posaconazole. Overall, the results demonstrated that these models may constitute valuable tools for the performance of pharmacokinetic and pharmacodynamic studies for pharmacokinetic-pharmacodynamic modeling.


Assuntos
Antifúngicos/uso terapêutico , Infecções Fúngicas do Sistema Nervoso Central/patologia , Scedosporium , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Barreira Hematoencefálica/patologia , Encéfalo/microbiologia , Encéfalo/patologia , Infecções Fúngicas do Sistema Nervoso Central/tratamento farmacológico , Infecções Fúngicas do Sistema Nervoso Central/microbiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hospedeiro Imunocomprometido , Imageamento por Ressonância Magnética , Masculino , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Análise de Sobrevida , Triazóis/administração & dosagem , Triazóis/farmacocinética , Triazóis/uso terapêutico , Voriconazol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...