Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
2.
PLoS Comput Biol ; 20(2): e1011836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358960

RESUMO

Practical courses mimic experimental research and may generate valuable data. Yet, data that is generated by students during a course is often lost as there is no centrally organized collection and storage of the data. The loss of data prevents its reuse. To provide access to these data, I present an approach that I call studentsourcing. It collects, aggregates, and reuses data that is generated by students in a practical course on cell biology. The course runs annually, and I have recorded the data that was generated by >100 students over 3 years. Two use cases illustrate how the data can be aggregated and reused either for the scientific record or for teaching. As the data is obtained by different students, in different groups, over different years, it is an excellent opportunity to discuss experimental design and modern data visualization methods such as the superplot. The first use case demonstrates how the data can be presented as an online, interactive dashboard, providing real-time data of the measurements. The second use case shows how central data storage provides a unique opportunity to get precise quantitative data due to the large sample size. Both use cases illustrate how data can be effectively aggregated and reused.


Assuntos
Projetos de Pesquisa , Estudantes , Humanos
3.
iScience ; 26(8): 107406, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37559902

RESUMO

During inflammation, leukocytes extravasate the vasculature to areas of inflammation in a process termed transendothelial migration. Previous research has shown that transendothelial migration hotspots exist, areas in the vasculature that are preferred by leukocytes to cross. Several factors that contribute to hotspot-mediated transmigration have been proposed already, but whether one leukocyte transmigration hotspot can be used subsequently by a second wave of leukocytes and thereby can increase the efficiency of leukocyte transmigration is not well understood. Here, we show that primary neutrophil adhesion to the endothelium triggers endothelial transmigration hotspots, allowing secondary neutrophils to cross the endothelium more efficiently. Mechanistically, we show that primary neutrophil adhesion increases the number of endothelial apical filopodia, resulting in an increase in the number of adherent secondary neutrophils. Using fluorescence resonance energy transfer (FRET)-based biosensors, we found that neutrophil adhesion did not trigger the activity of the small GTPase Cdc42. We used kinase translocation reporters to study the activity of mitogen-activated protein (MAP) kinases and Akt in endothelial cells on a single-cell level with a high temporal resolution during the process of leukocyte transmigration and found that c-Jun N-terminal kinase (JNK) is rapidly activated upon neutrophil adhesion, whereas extracellular regulated kinase (ERK), p38, and Akt are not. Additionally, we show that short-term chemical inhibition of endothelial JNK successfully prevents the adhesion of neutrophils to the endothelium. Furthermore, we show that neutrophil-induced endothelial JNK1 but not JNK2 increases the formation of filopodia and thereby the adhesion of secondary neutrophils. JNK1 needs its downstream substrate MARCKSL1 to trigger additional apical filopodia and consequently neutrophil adhesion. Overall, our data show that primary neutrophils can trigger the endothelial transmigration hotspot by activating JNK1 and MARCKSL1 to induce filopodia that trigger more neutrophils to transmigrate at the endothelial hotspot area.

4.
Sci Adv ; 9(31): eadh2073, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531430

RESUMO

Ubiquitin and ubiquitin-like conjugation cascades consist of dedicated E1, E2, and E3 enzymes with E3s providing substrate specificity. Mass spectrometry-based approaches have enabled the identification of more than 6500 SUMO2/3 target proteins. The limited number of SUMO E3s provides the unique opportunity to systematically study E3 substrate wiring. We developed SUMO-activated target traps (SATTs) and systematically identified substrates for eight different SUMO E3s, PIAS1, PIAS2, PIAS3, PIAS4, NSMCE2, ZNF451, LAZSUL (ZNF451-3), and ZMIZ2. SATTs enabled us to identify 427 SUMO1 and 961 SUMO2/3 targets in an E3-specific manner. We found pronounced E3 substrate preference. Quantitative proteomics enabled us to measure substrate specificity of E3s, quantified using the SATT index. Furthermore, we developed the Polar SATTs web-based tool to browse the dataset in an interactive manner. Overall, we uncover E3-to-target wiring of 1388 SUMO substrates, highlighting unique and overlapping sets of substrates for eight different SUMO E3 ligases.


Assuntos
Proteoma , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo
5.
Elife ; 122023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449837

RESUMO

The inner layer of blood vessels consists of endothelial cells, which form the physical barrier between blood and tissue. This vascular barrier is tightly regulated and is defined by cell-cell contacts through adherens and tight junctions. To investigate the signaling that regulates vascular barrier strength, we focused on Rho GTPases, regulators of the actin cytoskeleton and known to control junction integrity. To manipulate Rho GTPase signaling in a temporal and spatial manner we applied optogenetics. Guanine-nucleotide exchange factor (GEF) domains from ITSN1, TIAM1, and p63RhoGEF, activating Cdc42, Rac, and Rho, respectively, were integrated into the optogenetic recruitment tool improved light-induced dimer (iLID). This tool allows for Rho GTPase activation at the subcellular level in a reversible and non-invasive manner by recruiting a GEF to a specific area at the plasma membrane, The membrane tag of iLID was optimized and a HaloTag was applied to gain more flexibility for multiplex imaging. The resulting optogenetically recruitable RhoGEFs (Opto-RhoGEFs) were tested in an endothelial cell monolayer and demonstrated precise temporal control of vascular barrier strength by a cell-cell overlap-dependent, VE-cadherin-independent, mechanism. Furthermore, Opto-RhoGEFs enabled precise optogenetic control in endothelial cells over morphological features such as cell size, cell roundness, local extension, and cell contraction. In conclusion, we have optimized and applied the optogenetic iLID GEF recruitment tool, that is Opto-RhoGEFs, to study the role of Rho GTPases in the vascular barrier of the endothelium and found that membrane protrusions at the junction region can rapidly increase barrier integrity independent of VE-cadherin.


Assuntos
Células Endoteliais , Proteínas rho de Ligação ao GTP , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Células Endoteliais/metabolismo , Optogenética , Endotélio Vascular/metabolismo
6.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37226883

RESUMO

Rac (herein referring to the Rac family) and Cdc42 are Rho GTPases that regulate the formation of lamellipoda and filopodia, and are therefore crucial in processes such as cell migration. Relocation-based biosensors for Rac and Cdc42 have not been characterized well in terms of their specificity or affinity. In this study, we identify relocation sensor candidates for both Rac and Cdc42. We compared their (1) ability to bind the constitutively active Rho GTPases, (2) specificity for Rac and Cdc42, and (3) relocation efficiency in cell-based assays. Subsequently, the relocation efficiency was improved by a multi-domain approach. For Rac1, we found a sensor candidate with low relocation efficiency. For Cdc42, we found several sensors with sufficient relocation efficiency and specificity. These optimized sensors enable the wider application of Rho GTPase relocation sensors, which was showcased by the detection of local endogenous Cdc42 activity at assembling invadopodia. Moreover, we tested several fluorescent proteins and HaloTag for their influence on the recruitment efficiency of the Rho location sensor, to find optimal conditions for a multiplexing experiment. This characterization and optimization of relocation sensors will broaden their application and acceptance.


Assuntos
Podossomos , Proteínas rho de Ligação ao GTP , Movimento Celular , Pseudópodes
7.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36571786

RESUMO

Invadopodia formation is regulated by Rho GTPases. However, the molecular mechanisms that control Rho GTPase signaling at invadopodia remain poorly understood. Here, we have identified ARHGAP17, a Cdc42-specific RhoGAP, as a key regulator of invadopodia in breast cancer cells and characterized a novel ARHGAP17-mediated signaling pathway that controls the spatiotemporal activity of Cdc42 during invadopodia turnover. Our results show that during invadopodia assembly, ARHGAP17 localizes to the invadopodia ring and restricts the activity of Cdc42 to the invadopodia core, where it promotes invadopodia growth. Invadopodia disassembly starts when ARHGAP17 translocates from the invadopodia ring to the core, in a process that is mediated by its interaction with the Cdc42 effector CIP4. Once at the core, ARHGAP17 inactivates Cdc42 to promote invadopodia disassembly. Our results in invadopodia provide new insights into the coordinated transition between the activation and inactivation of Rho GTPases.


Assuntos
Neoplasias da Mama , Proteínas Ativadoras de GTPase , Podossomos , Proteína cdc42 de Ligação ao GTP , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Podossomos/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Humanos , Proteínas Ativadoras de GTPase/metabolismo
8.
EMBO Rep ; 24(1): e55483, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36382783

RESUMO

Upon inflammation, leukocytes leave the circulation by crossing the endothelial monolayer at specific transmigration "hotspot" regions. Although these regions support leukocyte transmigration, their functionality is not clear. We found that endothelial hotspots function to limit vascular leakage during transmigration events. Using the photoconvertible probe mEos4b, we traced back and identified original endothelial transmigration hotspots. Using this method, we show that the heterogeneous distribution of ICAM-1 determines the location of the transmigration hotspot. Interestingly, the loss of ICAM-1 heterogeneity either by CRISPR/Cas9-induced knockout of ICAM-1 or equalizing the distribution of ICAM-1 in all endothelial cells results in the loss of TEM hotspots but not necessarily in reduced TEM events. Functionally, the loss of endothelial hotspots results in increased vascular leakage during TEM. Mechanistically, we demonstrate that the 3 extracellular Ig-like domains of ICAM-1 are crucial for hotspot recognition. However, the intracellular tail of ICAM-1 and the 4th Ig-like dimerization domain are not involved, indicating that intracellular signaling or ICAM-1 dimerization is not required for hotspot recognition. Together, we discovered that hotspots function to limit vascular leakage during inflammation-induced extravasation.


Assuntos
Molécula 1 de Adesão Intercelular , Migração Transendotelial e Transepitelial , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais/metabolismo , Leucócitos/metabolismo , Transdução de Sinais , Endotélio Vascular/metabolismo , Movimento Celular , Adesão Celular
9.
Methods Mol Biol ; 2440: 329-348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218548

RESUMO

One obvious feature of life is that it is highly dynamic. The dynamics can be captured by movies that are made by acquiring images at regular time intervals, a method that is also known as time-lapse imaging. Looking at movies is a great way to learn more about the dynamics in cells, tissue, and organisms. However, science is different from Netflix, in that it aims for a quantitative understanding of the dynamics. The quantification is important for the comparison of dynamics and to study effects of perturbations. Here, we provide detailed processing and analysis methods that we commonly use to analyze and visualize our time-lapse imaging data. All methods use freely available open-source software and use example data that is available from an online data repository. The step-by-step guides together with example data allow for fully reproducible workflows that can be modified and adjusted to visualize and quantify other data from time-lapse imaging experiments.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Imagem com Lapso de Tempo/métodos
10.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107584

RESUMO

Kinases play key roles in signaling networks that are activated by G-protein-coupled receptors (GPCRs). Kinase activities are generally inferred from cell lysates, hiding cell-to-cell variability. To study the dynamics and heterogeneity of ERK and Akt proteins, we employed high-content biosensor imaging with kinase translocation reporters. The kinases were activated with GPCR ligands. We observed ligand concentration-dependent response kinetics to histamine, α2-adrenergic and S1P receptor stimulation. By using G-protein inhibitors, we observed that Gq mediated the ERK and Akt responses to histamine. In contrast, Gi was necessary for ERK and Akt activation in response to α2-adrenergic receptor activation. ERK and Akt were also strongly activated by S1P, showing high heterogeneity at the single-cell level, especially for ERK. Cluster analysis of time series derived from 68,000 cells obtained under the different conditions revealed several distinct populations of cells that display similar response dynamics. ERK response dynamics to S1P showed high heterogeneity, which was reduced by the inhibition of Gi. To conclude, we have set up an imaging and analysis strategy that reveals substantial cell-to-cell heterogeneity in kinase activity driven by GPCRs.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptores Acoplados a Proteínas G , Ativação Enzimática , Histamina/metabolismo , Histamina/farmacologia , Ligantes , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
11.
Nucleic Acids Res ; 50(2): e10, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34734265

RESUMO

The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS - a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.


Assuntos
Proteínas de Bactérias/metabolismo , Bioensaio/métodos , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Coloração e Rotulagem/métodos , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Clonagem Molecular , Replicação do DNA , DNA Bacteriano/química , Proteínas de Ligação a DNA/genética , Corantes Fluorescentes , Expressão Gênica , Vetores Genéticos , Microscopia de Fluorescência
12.
Nat Commun ; 12(1): 7159, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887382

RESUMO

The most successful genetically encoded calcium indicators (GECIs) employ an intensity or ratiometric readout. Despite a large calcium-dependent change in fluorescence intensity, the quantification of calcium concentrations with GECIs is problematic, which is further complicated by the sensitivity of all GECIs to changes in the pH in the biological range. Here, we report on a sensing strategy in which a conformational change directly modifies the fluorescence quantum yield and fluorescence lifetime of a circular permutated turquoise fluorescent protein. The fluorescence lifetime is an absolute parameter that enables straightforward quantification, eliminating intensity-related artifacts. An engineering strategy that optimizes lifetime contrast led to a biosensor that shows a 3-fold change in the calcium-dependent quantum yield and a fluorescence lifetime change of 1.3 ns. We dub the biosensor Turquoise Calcium Fluorescence LIfeTime Sensor (Tq-Ca-FLITS). The response of the calcium sensor is insensitive to pH between 6.2-9. As a result, Tq-Ca-FLITS enables robust measurements of intracellular calcium concentrations by fluorescence lifetime imaging. We demonstrate quantitative imaging of calcium concentrations with the turquoise GECI in single endothelial cells and human-derived organoids.


Assuntos
Técnicas Biossensoriais/métodos , Cálcio/análise , Células Endoteliais/metabolismo , Proteínas Luminescentes/química , Técnicas Biossensoriais/instrumentação , Cálcio/metabolismo , Células Endoteliais/química , Fluorescência , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Organoides/química , Organoides/metabolismo
13.
F1000Res ; 10: 1125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900235

RESUMO

In molecular cell biology, reporter assays are frequently used to investigate gene expression levels. Reporter assays employ a gene that encodes a light-emitting protein, of which the luminescence is quantified as a proxy of gene expression. Commercial parties provide reporter assay kits that include protocols and specialized detection machinery. However, downstream analysis of the output data and their presentation are not standardized. We have developed plotXpress to fill this gap, providing a free, open-source platform for the semi-automated analysis and standardized visualisation of experimental gene reporter data. Users can upload raw luminescence data acquired from a reporter gene assay with an internal control. In plotXpress, the data is corrected for sample variation with the internal control and the average for each condition is calculated. When a reference condition is selected the fold change is calculated for all other conditions, based on the selected reference. The results are shown as dot plots with a statistical summary, which can be adjusted to create publication-grade plots without requiring coding skills. Altogether, plotXpress is an open-source, low-threshold, web-based tool, that promotes a standardized and reproducible analysis while providing an appealing visualization of reporter data. The webtool can be accessed at: https://huygens.science.uva.nl/PlotXpress/.


Assuntos
Software , Genes Reporter
14.
J Cell Sci ; 134(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357388

RESUMO

Rho GTPases are regulatory proteins, which orchestrate cell features such as morphology, polarity and movement. Therefore, probing Rho GTPase activity is key to understanding processes such as development and cell migration. Localization-based reporters for active Rho GTPases are attractive probes to study Rho GTPase-mediated processes in real time with subcellular resolution in living cells and tissue. Until now, relocation Rho biosensors (sensors that relocalize to the native location of active Rho GTPase) seem to have been only useful in certain organisms and have not been characterized well. In this paper, we systematically examined the contribution of the fluorescent protein and Rho-binding peptides on the performance of localization-based sensors. To test the performance, we compared relocation efficiency and specificity in cell-based assays. We identified several improved localization-based, genetically encoded fluorescent biosensors for detecting endogenous Rho activity. This enables a broader application of Rho relocation biosensors, which was demonstrated by using the improved biosensor to visualize Rho activity during several cellular processes, such as cell division, migration and G protein-coupled receptor signaling. Owing to the improved avidity of the new biosensors for Rho activity, cellular processes regulated by Rho can be better understood. This article has an associated First Person interview with the first author of the paper.


Assuntos
Técnicas Biossensoriais , Movimento Celular/genética , Humanos , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
15.
Elife ; 102021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34431475

RESUMO

Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, alhough it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.


Assuntos
Regulação da Expressão Gênica/fisiologia , Junções Intercelulares/fisiologia , Neutrófilos/fisiologia , Animais , Linhagem Celular , Proteínas de Fluorescência Verde , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura
16.
Front Immunol ; 12: 667213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084168

RESUMO

An inflammatory response requires leukocytes to migrate from the circulation across the vascular lining into the tissue to clear the invading pathogen. Whereas a lot of attention is focused on how leukocytes make their way through the endothelial monolayer, it is less clear how leukocytes migrate underneath the endothelium before they enter the tissue. Upon finalization of the diapedesis step, leukocytes reside in the subendothelial space and encounter endothelial focal adhesions. Using TIRF microscopy, we show that neutrophils navigate around these focal adhesions. Neutrophils recognize focal adhesions as physical obstacles and deform to get around them. Increasing the number of focal adhesions by silencing the small GTPase RhoJ slows down basolateral crawling of neutrophils. However, apical crawling and diapedesis itself are not affected by RhoJ depletion. Increasing the number of focal adhesions drastically by expressing the Rac1 GEF Tiam1 make neutrophils to avoid migrating underneath these Tiam1-expressing endothelial cells. Together, our results show that focal adhesions mark the basolateral migration path of neutrophils.


Assuntos
Células Endoteliais/fisiologia , Adesões Focais/fisiologia , Neutrófilos/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Linhagem Celular , Humanos , Leucócitos/fisiologia , Cordão Umbilical/patologia
17.
Methods Mol Biol ; 2268: 159-178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085268

RESUMO

A wealth of assays for screening GPCR activity have been developed. Biosensors that employ Förster Resonance Energy transfer (FRET) are specific and enable dynamic measurements. Moreover, FRET biosensors are ideally suited for the analysis of single living cells. The FRET biosensors described in this manuscript are entirely genetically encoded by plasmids. Here, protocols for employing FRET-based biosensors to detect G protein activity upon GPCR activation are reported. The protocols include details on the isolation of plasmids, transfection, generation of stable cell lines with the FRET biosensors, FRET ratio imaging, and data analysis.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Bactérias/química , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Proteínas Luminescentes/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transdução de Sinais
18.
Res Vet Sci ; 137: 281-286, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34058399

RESUMO

Investigators use Bland-Altman plot (Limits of Agreement plot) to compare two methods measuring the same continuous variable to determine interchangeability or agreement of the methods. The method has evolved to deal with heteroscedastic data and fixed or proportional biases (or both). Although an ordinary Bland-Altman plot can be readily made with various software applications, there is no free, open-source application that is dedicated to producing Bland-Altman plots and constructing limits of agreement for data that do not meet the assumptions of a simple comparison. To fill this gap, we created BA-plotteR, a web-based, open-source, freeware tool created in Shiny/R that is dedicated to creating Bland-Altman plots. We validated the tool using 20 datasets with various data distributions by comparing the output from the tool against manually derived results. The webtool handles data that requires a more complex analysis than is commonly available through commercial statistical programs. Moreover, the automated analysis of the data distribution will guide users and help them to correctly plot and analyse their data. The tool agreed perfectly with manually constructed plots. The Bland-Altman graphing tool provides clinical researchers with a tool that correctly analyzes and graphs studies involved in method comparisons. The tool can be accessed here: https://huygens.science.uva.nl/BA-plotteR.


Assuntos
Internet , Computação Matemática , Software
19.
Mol Biol Cell ; 32(13): 1229-1240, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33881352

RESUMO

The cAMP-PKA signaling cascade in budding yeast regulates adaptation to changing environments. We developed yEPAC, a FRET-based biosensor for cAMP measurements in yeast. We used this sensor with flow cytometry for high-throughput single cell-level quantification during dynamic changes in response to sudden nutrient transitions. We found that the characteristic cAMP peak differentiates between different carbon source transitions and is rather homogenous among single cells, especially for transitions to glucose. The peaks are mediated by a combination of extracellular sensing and intracellular metabolism. Moreover, the cAMP peak follows the Weber-Fechner law; its height scales with the relative, and not the absolute, change in glucose. Last, our results suggest that the cAMP peak height conveys information about prospective growth rates. In conclusion, our yEPAC-sensor makes possible new avenues for understanding yeast physiology, signaling, and metabolic adaptation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/análise , AMP Cíclico/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Biossensoriais/métodos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citometria de Fluxo/métodos , Glucose/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Estudos Prospectivos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Análise de Célula Única/métodos
20.
Mol Biol Cell ; 32(6): 470-474, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476183

RESUMO

Plots and charts are graphical tools that make data intelligible and digestible by humans. But the oversimplification of data by only plotting the statistical summaries conflicts with the transparent communication of results. Therefore, plotting of all data are generally encouraged and this can be achieved by using a dotplot for discrete conditions. Dotplots, however, often fail to communicate whether the data are from different technical or biological replicates. The superplot has been proposed by Lord and colleagues (Lord et al., 2020) to improve the communication of experimental design and results. To simplify the plotting of data from discrete conditions as a superplot, the SuperPlotsOfData web app was generated. The tool offers easy and open access to state-of-the-art data visualization. In addition, it incorporates recent innovations in data visualization and analysis, including raincloud plots and estimation statistics. The free, open source webtool can be accessed at: https://huygens.science.uva.nl/SuperPlotsOfData/.


Assuntos
Biologia Computacional/métodos , Análise Numérica Assistida por Computador , Humanos , Internet , Aplicativos Móveis , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...