Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 277: 111427, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069154

RESUMO

Proper identification of critical source areas (CSAs) is important for economic viability of any best management practices (BMPs) aimed at reducing sediment and phosphorus loads to receiving water bodies. Both continuous and event-based hydrologic and water quality models are widely used to identify and assess CSAs, however, their comparative assessment is lacking. In this study, we have used continuous Soil and Water Assessment Tool (SWAT) and event-based Agriculture Non-Point Source (AGNPS) pollution models to identify CSAs for sediment and phosphorus in a watershed in Ontario, Canada. Along with their original version, both models were re-conceptualized to incorporate saturation excess mechanism of runoff generation, which is also refereed as variable source area (VSA) integration. The models were set-up using high resolution spatial, crop- and land-management, and meteorological dataset; and calibrated with reasonable accuracy against streamflow, sediment and phosphorus concentration data at multiple locations. Threshold value (t-value) approach was used to identify CSA areas in the watershed. Results showed that both models were in agreement (up to 96% of fields) that summer season did not constitute hot-moments (<6% of the watershed area as CSAs) for both sediment and phosphorus. SWAT models identified winter (~50% of watershed area as CSA) and AGNPS models identified early spring (~50% of watershed areas as CSAs) season as the hot-moment for both sediment and phosphorus. Contrasting result, as indicated by low (1%) matching in field CSA potential, was observed in autumn season. In the same season, VSA integrated SWAT and AGNPS models showed better matching (43% for sediment and 31% for phosphorus), highlighting the importance of VSA integration in the models. Qualitative validation of model-based CSA potential with oblique aerial-photograph-based CSA potential in two soil moisture conditions (wetter and drier) indicated slightly better performance of the SWAT models, and over-prediction of the AGNPS models. However, a more comprehensive analysis based on more detailed field observations is needed to further confirm the results.


Assuntos
Agricultura , Fósforo , Monitoramento Ambiental , Modelos Teóricos , Ontário , Fósforo/análise , Solo , Qualidade da Água
2.
Environ Sci Pollut Res Int ; 27(4): 3794-3802, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31879874

RESUMO

Identifying critical source areas (CSAs) of a watershed by phosphorus (P) loss assessment tools is essential for optimal placement of beneficial management practices (BMPs) to address diffuse P pollution. However, lack of significant progress in tackling diffuse P pollution could be, in part, associated with inefficacy of P loss assessment tools for accurately identifying CSAs. Phosphorus loss assessment tools have been developed to simulate P loss from the landscape where runoff is mainly driven by rainfall events. Therefore, they may underperform in cold climates where the land is often frozen during winter and runoff is dominated by snowmelt. This paper (i) reviews the strengths and weaknesses of current P loss assessment tools and their underlying assumptions in simulating soil P dynamics and P transfer to runoff, and (ii) highlights a number of challenges associated with modeling P transfer from agricultural land to surface waters in cold climates. Current P loss assessment tools do not appear to fully represent hydrological and biogeochemical processes responsible for P loss from CSAs, particularly in cold climates. Effort should be made to develop P loss assessment tools that are capable of considering P dynamics through the landscape as a result of abiotic perturbations that are common in cold climates, predicting runoff and P movement over frozen/partially frozen soils, and considering material-P connectivity between landscape and surface waters. Evaluating P loss assessment tools with water quality data is necessary to ensure such modifications result in improved identification of CSAs.


Assuntos
Clima Frio , Fósforo , Agricultura , Fósforo/análise , Fósforo/química , Solo , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...