Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35499083

RESUMO

BACKGROUNDHyaluronan (HA), an extracellular matrix glycosaminoglycan, has been implicated in the pathophysiology of COVID-19 infection, pulmonary hypertension, pulmonary fibrosis, and other diseases, but is not targeted by any approved drugs. We asked whether hymecromone (4-methylumbelliferone [4-MU]), an oral drug approved in Europe for biliary spasm treatment that also inhibits HA in vitro and in animal models, could be repurposed as an inhibitor of HA synthesis in humans.METHODSWe conducted an open-label, single-center, dose-response study of hymecromone in healthy adults. Subjects received hymecromone at 1200 (n = 8), 2400 (n = 9), or 3600 (n = 9) mg/d divided into 3 doses daily, administered orally for 4 days. We assessed safety and tolerability of hymecromone and analyzed HA, 4-MU, and 4-methylumbelliferyl glucuronide (4-MUG; the main metabolite of 4-MU) concentrations in sputum and serum.RESULTSHymecromone was well tolerated up to doses of 3600 mg/d. Both sputum and serum drug concentrations increased in a dose-dependent manner, indicating that higher doses lead to greater exposures. Across all dose arms combined, we observed a significant decrease in sputum HA from baseline after 4 days of treatment. We also observed a decrease in serum HA. Additionally, higher baseline sputum HA levels were associated with a greater decrease in sputum HA.CONCLUSIONAfter 4 days of exposure to oral hymecromone, healthy human subjects experienced a significant reduction in sputum HA levels, indicating this oral therapy may have potential in pulmonary diseases where HA is implicated in pathogenesis.TRIAL REGISTRATIONClinicalTrials.gov NCT02780752.FUNDINGStanford Medicine Catalyst, Stanford SPARK, Stanford Innovative Medicines Accelerator program, NIH training grants 5T32AI052073-14 and T32HL129970.


Assuntos
Ácido Hialurônico , Himecromona , Administração Oral , COVID-19 , Europa (Continente) , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Himecromona/administração & dosagem , Himecromona/efeitos adversos
2.
Cancer Res ; 79(12): 3050-3062, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30796052

RESUMO

Lung cancer is the leading cause of cancer-related death in the United States. Long noncoding RNAs (lncRNA) are a class of regulatory molecules whose role in lung carcinogenesis is poorly understood. In this study, we profiled lncRNA expression in lung adenocarcinoma (LUAD) cell lines, compared their expression with that of purified alveolar epithelial type II cells (the purported cell of origin for LUAD), cross-referenced these with lncRNAs altered in the primary human tumors, and interrogated for lncRNAs whose expression correlated with patient survival. We identified LINC00261, a lncRNA with unknown function in LUAD, adjacent to the pioneering transcription factor FOXA2. Loss of LINC00261 was observed in multiple tumor types, including liver, breast, and gastric cancer. Reintroduction of LINC00261 into human LUAD cell lines inhibited cell migration and slowed proliferation by inducing G2-M cell-cycle arrest, while upregulating DNA damage pathway genes and inducing phosphorylation-mediated activation of components of the DNA damage pathway. FOXA2 was able to induce LINC00261 expression, and the entire locus underwent hypermethylation in LUAD, leading to loss of expression. We have thus identified an epigenetically deregulated lncRNA, whose loss of expression in LUAD promotes the malignant phenotype and blocks activation of the DNA damage machinery, predisposing lung cells to cancer development. SIGNIFICANCE: These findings identify LINC00261 as a tumor suppressor that blocks cellular proliferation by activating the DNA damage response and suggest that epigenetic therapy to inhibit DNA methylation may enhance treatment of LUAD. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/12/3050/F1.large.jpg.See related commentary by Davalos and Esteller, p. 3028.


Assuntos
Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Proliferação de Células , Dano ao DNA , Genes Supressores de Tumor , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...