Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6228, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737611

RESUMO

Regional climate models (RCMs) are indispensable in climate research, albeit often characterized by biased terrestrial precipitation and water budgets. This study identifies excess oceanic evaporation, in conjunction with the RCMs' boundary conditions, as drivers contributing to these biases in RCMs with forced sea surface temperatures in a CORDEX RCM ensemble over Europe. The RCMs are relaxed to the prescribed lateral boundary conditions originating from a global model, effectively matching the driving model's overall atmospheric moisture flux divergence. As a consequence, excess oceanic evaporation results in positive precipitation biases over land due to forced internal recycling of moisture to maintain the overall flux divergence prescribed by the boundary conditions. This systematic behaviour is shown through an analysis of long-term atmospheric water budgets and atmospheric moisture exchange between oceanic and continental areas in a multi-model ensemble.

2.
Sci Data ; 6(1): 320, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844064

RESUMO

Applying the Terrestrial Systems Modeling Platform, TSMP, this study provides the first simulated long-term (1996-2018), high-resolution (~12.5 km) terrestrial system climatology over Europe, which comprises variables from groundwater across the land surface to the top of the atmosphere (G2A). The data set offers an unprecedented opportunity to test hypotheses related to short- and long-range feedback processes in space and time between the different interacting compartments of the terrestrial system. The physical consistency of simulated states and fluxes in the terrestrial system constitutes the uniqueness of the data set: while most regional climate models (RCMs) have a tendency to simplify the soil moisture and groundwater representation, TSMP explicitly simulates a full 3D soil- and groundwater dynamics, closing the terrestrial water cycle from G2A. As anthopogenic impacts are excluded, the dataset may serve as a near-natural reference for global change simulations including human water use and climate change. The data set is available as netCDF files for the pan-European EURO-CORDEX domain.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31627393

RESUMO

Changes in the frequency and intensity of heat waves have shown substantial negative impacts on public health. At the same time, climate change towards increasing air temperatures throughout Europe will foster such extreme events, leading to the population being more exposed to them and societies becoming more vulnerable. Based on two climate change scenarios (Representative Concentration Pathway 4.5 and 8.5) we analysed the frequency and intensity of heat waves for three capital cities in Europe representing a North-South transect (London, Luxembourg, Rome). We used indices proposed by the Expert Team on Sector-Specific Climate Indices of the World Meteorological Organization to analyze the number of heat waves, the number of days that contribute to heat waves, the length of the longest heat waves, as well as the mean temperature during heat waves. The threshold for the definition of heat waves is calculated based on a reference period of 30 years for each of the three cities, allowing for a direct comparison of the projected changes between the cities. Changes in the projected air temperature between a reference period (1971-2000) and three future periods (2001-2030 near future, 2031-2060 middle future, and 2061-2090 far future) are statistically significant for all three cities and both emission scenarios. Considerable similarities could be identified for the different heat wave indices. This directly affects the risk of the exposed population and might also negatively influence food security and water supply.


Assuntos
Mudança Climática , Temperatura Alta , Saúde Pública , Cidades , Europa (Continente) , Previsões , Humanos , Mortalidade , Temperatura
4.
Sci Total Environ ; 640-641: 387-399, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860010

RESUMO

Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes.

5.
Glob Chang Biol ; 21(1): 62-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25044767

RESUMO

Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.


Assuntos
Incêndios , Pradaria , Austrália , Carbono/química , Clima , Mudança Climática , Ecossistema , Água
6.
Rev Geophys ; 53(2): 323-361, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-27478878

RESUMO

Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...