Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Biomed Mater Res A ; 112(3): 373-389, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37902409

RESUMO

Biomaterials with nanoscale topography have been increasingly investigated for medical device applications to improve tissue-material interactions. This study assessed the impact of nanoengineered titanium surface domain sizes on early biological responses that can significantly affect tissue interactions. Nanostructured titanium coatings with distinct nanoscale surface roughness were deposited on quartz crystal microbalance with dissipation (QCM-D) sensors by physical vapor deposition. Physico-chemical characterization was conducted to assess nanoscale surface roughness, nano-topographical morphology, wettability, and atomic composition. The results demonstrated increased projected surface area and hydrophilicity with increasing nanoscale surface roughness. The adsorption properties of albumin and fibrinogen, two major plasma proteins that readily encounter implanted surfaces, on the nanostructured surfaces were measured using QCM-D. Significant differences in the amounts and viscoelastic properties of adsorbed proteins were observed, dependent on the surface roughness, protein type, protein concentration, and protein binding affinity. The impact of protein adsorption on subsequent biological responses was also examined using qualitative and quantitative in vitro evaluation of human platelet adhesion, aggregation, and activation. Qualitative platelet morphology assessment indicated increased platelet activation/aggregation on titanium surfaces with increased roughness. These data suggest that nanoscale differences in titanium surface roughness influence biological responses that may affect implant integration.


Assuntos
Fibrinogênio , Titânio , Humanos , Adsorção , Fibrinogênio/química , Titânio/farmacologia , Titânio/química , Propriedades de Superfície , Albuminas
2.
J Biomed Mater Res B Appl Biomater ; 111(5): 987-995, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444900

RESUMO

Integration of native bone into orthopedic devices is a key factor in long-term implant success. The material-tissue interface is generally accepted to consist of a hydroxyapatite layer so bioactive materials that can spontaneously generate this hydroxyapatite layer after implantation may improve patient outcomes. Per the ISO 22317:2014 standard, "Implants for surgery - In vitro evaluation for apatite-forming ability of implant materials," bioactivity performance statements can be assessed by soaking the material in simulated body fluid (SBF) and evaluating the surface for the formation of a hydroxyapatite layer; however, variations in test methods may alter hydroxyapatite formation and result in false-positive assessments. The goal of this study was to identify the effect of SBF formulation on bioactivity assessment. Bioglass® (45S5 and S53P4) and non-bioactive Ti-6Al-4V were exposed to SBF formulations varying in calcium ion and phosphate concentrations as well as supporting ion concentrations. Scanning electron microscopy and X-ray powder diffraction evaluation of the resulting hydroxyapatite layers revealed that SBF enriched with double or quadruple the calcium and phosphate ion concentrations increased hydroxyapatite crystal size and quantity compared to the standard formulation and can induce hydroxyapatite crystallization on surfaces traditionally considered non-bioactive. Altering concentrations of other ions, for example, bicarbonate, changed hydroxyapatite induction time, quantity, and morphology. For studies evaluating the apatite-forming ability of a material to support bioactivity performance statements, test method parameters must be adequately described and controlled. It is unclear if apatite formation after exposure to any of the SBF formulations is representative of an in vivo biological response. The ISO 23317 standard test method should be further developed to provide additional guidance on apatite characterization and interpretation of the results.


Assuntos
Apatitas , Líquidos Corporais , Humanos , Apatitas/química , Cálcio/química , Propriedades de Superfície , Durapatita/química , Líquidos Corporais/química , Microscopia Eletrônica de Varredura , Difração de Raios X
3.
Toxicol Sci ; 188(2): 261-275, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35708658

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) have been investigated for biomedical applications, including novel contrast agents, magnetic tracers for tumor imaging, targeted drug delivery vehicles, and magneto-mechanical actuators for hyperthermia and thrombolysis. Despite significant progress, recent clinical reports have raised concerns regarding USPION safety related to endothelial cell dysfunction; however, there is limited information on factors contributing to these clinical responses. The influence of USPION surface chemistry on nanoparticle interactions with proteins may impact endothelial cell function leading to adverse responses. Therefore, the goal of this study was to assess the effects of carboxyl-functionalized USPION (CU) or amine-functionalized USPION (AU) (approximately 30 nm diameter) on biological responses in human coronary artery endothelial cells. Increased protein adsorption was observed for AU compared with CU after exposure to serum proteins. Exposure to CU, but not AU, resulted in a concentration-dependent decrease in cell viability and perinuclear accumulation inside cytoplasmic vesicles. Internalization of CU was correlated with endothelial cell functional changes under non-cytotoxic conditions, as evidenced by a marked decreased expression of endothelial-specific adhesion proteins (eg, vascular endothelial-cadherin and platelet endothelial cell adhesion molecule-1) and increased endothelial permeability. Evaluation of downstream signaling indicated endothelial permeability is associated with actin cytoskeleton remodeling, possibly elicited by intracellular events involving reactive oxygen species, calcium ions, and the nanoparticle cellular uptake pathway. This study demonstrated that USPION surface chemistry significantly impacts protein adsorption and endothelial cell uptake, viability, and barrier function. This information will advance the current toxicological profile of USPION and improve development, safety assessment, and clinical outcomes of USPION-enabled medical products.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Células Endoteliais/metabolismo , Compostos Férricos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Coroa de Proteína/metabolismo
4.
Int J Bioprint ; 6(1): 188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782983

RESUMO

Matrix-assisted pulsed laser evaporation (MAPLE) has many benefits over conventional methods (e.g., dip-coating, spin coating, and Langmuir-Blodgett dip-coating) for manufacturing coatings containing pharmacologic agents on medical devices. In particular, the thickness of the coating that is applied to the surface of the medical device can be tightly controlled. In this study, MAPLE was used to deposit rapamycin-polyvinylpyrrolidone (rapamycin-PVP) thin films onto silicon and borosilicate optical glass substrates. Alamar Blue and PicoGreen studies were used to measure the metabolic health and DNA content of L929 mouse fibroblasts as measures of viability and proliferation, respectively. The cells on the MAPLE-deposited rapamycin-PVP surfaces exhibited 70.6% viability and 53.7% proliferation compared to a borosilicate glass control. These data indicate that the antiproliferative properties of rapamycin were maintained after MAPLE deposition.

5.
Biointerphases ; 15(4): 041007, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736477

RESUMO

In this study, the structure, adhesion, and cell viability characteristics of silicon-incorporated diamond-like carbon (Si-DLC) coatings on fused silica substrates were investigated. The effects of argon and oxygen postprocessing plasma treatments on the Si-DLC coatings were also studied. The contact angle results showed that the Si-DLC coatings were more hydrophilic than the uncoated surfaces, and postprocessing plasma treatment increased the hydrophilicity of the Si-DLC coatings. Atomic force microscopy and profilometry confirmed that postprocessing plasma treatment increased the thickness and roughness of the Si-DLC coatings. The results of microscratch testing indicated that the plasma treatments reduced the adhesion of the coatings. The x-ray photoelectron spectroscopy (XPS) showed the presence of carbon, oxygen, and silicon in the Si-DLC coatings before and after the plasma treatments. These results show that the postprocessing plasma treatment significantly reduced the atomic percentage of the carbon in the Si-DLC coatings. XPS also confirmed the presence of carbon in the form of sp3(C-C), sp2(C=C), C-O, and C=O bonds in the Si-DLC coatings; it showed that postprocessing treatments significantly increased the percentage of oxygen in the Si-DLC coatings. Fourier transform infrared spectroscopy (FTIR) analysis showed features associated with C-OH stretching, C-H bending, as well as Si-CH2 and C-H bending in the Si-DLC coating. The XPS and FTIR results confirmed that the plasma treatment caused dissociation of the sp2 and sp3 bonds and formation of C-OH bonds. The contact angle data indicated that postprocessing treatment increased the hydrophilicity of the Si-DLC coating. Similar to the uncoated substrates, L929 cells showed no change in cell viability when cultured on Si-DLC coatings. These results of the study indicate the suitability of Si-DLC coatings as inert coatings for medical and biotechnology applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Gases em Plasma/química , Silício/química , Animais , Argônio/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/farmacologia , Diamante/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Microscopia de Força Atômica , Oxigênio/química , Espectroscopia Fotoeletrônica , Propriedades de Superfície
7.
Polymers (Basel) ; 12(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635323

RESUMO

Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP) is a free radical photo-initiator used to initiate free radical chain polymerization upon light exposure, and is combined with gelatin methacryloyl (GelMA) to produce a photopolymer used in bioprinting. The free radicals produced under bioprinting conditions are potentially cytotoxic and mutagenic. Since these photo-generated free radicals are highly-reactive but short-lived, toxicity assessments should be conducted with light exposure. In this study, photorheology determined that 10 min exposure to 9.6 mW/cm2 405 nm light from an LED light source fully crosslinked 10 wt % GelMA with >3.4 mmol/L LAP, conditions that were used for subsequent cytotoxicity and mutagenicity assessments. These conditions were cytotoxic to M-1 mouse kidney collecting duct cells, a cell type susceptible to lithium toxicity. Exposure to ≤17 mmol/L (0.5 wt %) LAP without light was not cytotoxic; however, concurrent exposure to ≥3.4 mmol/L LAP and light was cytotoxic. No condition of LAP and/or light exposure evaluated was mutagenic in bacterial reverse mutation assays using S. typhimurium strains TA98, TA100 and E. coli WP2 uvrA. These data indicate that the combination of LAP and free radicals generated from photo-excited LAP is cytotoxic, but mutagenicity was not observed in bacteria under typical bioprinting conditions.

8.
J Appl Toxicol ; 40(7): 918-930, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32080871

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) possess reactive surfaces, are metabolized and exhibit unique magnetic properties. These properties are desirable for designing novel theranostic biomedical products; however, toxicity mechanisms of USPION are not completely elucidated. The goal of this study was to investigate cell interactions (uptake and cytotoxicity) of USPION using human coronary artery endothelial cells as a vascular cell model. Polyvinylpirrolidone-coated USPION were characterized: average diameter 17 nm (transmission electron microscopy [TEM]), average hydrodynamic diameter 44 nm (dynamic light scattering) and zeta potential -38.75 mV. Cells were exposed to 0 (control), 25, 50, 100 or 200 µg/mL USPION. Concentration- and time-dependent cytotoxicity were observed after 3-6 hours through 24 hours of exposure using Alamar Blue and Real-Time Cell Electronic Sensing assays. Cell uptake was evaluated by imaging using live-dead confocal microscopy, actin and nuclear fluorescent staining, and TEM. Phase-contrast, confocal microscopy, and TEM imaging showed significant USPION internalization as early as 3 hours after exposure to 25 µg/mL. TEM imaging demonstrated particle internalization in secondary lysosomes with perinuclear localization. Three orthogonal assays were conducted to assess apoptosis. TUNEL staining demonstrated a marked increase in fragmented DNA, a response pathognomonic of apoptosis, after a 4-hour exposure. Cells subjected to agarose gel electrophoresis exhibited degraded DNA 3 hours after exposure. Caspase-3/7 activity increased after a 3-hour exposure. USPION uptake resulted in cytotoxicity involving apoptosis and these results contribute to further mechanistic understanding of the USPION toxicity in vitro in cardiovascular endothelial cells.


Assuntos
Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Citotoxinas/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Humanos
9.
Biointerphases ; 14(2): 021007, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053032

RESUMO

Gelatin methacryloyl (GelMA) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator are commonly used in combination to produce a photosensitive polymer but there are concerns that must be addressed: the presence of unreacted monomer is well known to be cytotoxic, and lithium salts are known to cause acute kidney injury. In this study, acellular 10% GelMA hydrogels cross-linked with different LAP concentrations and cross-linking illumination times were evaluated for their cytotoxicity, photosensitizing potential, and elastic moduli. Alamar Blue and CyQuant Direct Cell viability assays were performed on human primary renal proximal tubule epithelial cells (hRPTECs) exposed to extracts of each formulation. UV exposure during cross-linking was not found to affect extract cytotoxicity in either assay. LAP concentration did not affect extract cytotoxicity as determined by the Alamar Blue assay but reduced hRPTEC viability in the CyQuant Direct cell assay. Photocatalytic activity of formulation extracts toward NADH oxidation was used as a screening method for photosensitizing potential; longer UV exposure durations yielded extracts with less photocatalytic activity. Finally, elastic moduli determined using nanoindentation was found to plateau to approximately 20-25 kPa after exposure to 342 mJ/cm2 at 2.87 mW of UV-A exposure regardless of LAP concentration. LAP at concentrations commonly used in bioprinting (<0.5% w/w) was not found to be cytotoxic although the differences in cytotoxicity evaluation determined from the two viability assays imply cell membrane damage and should be investigated further. Complete cross-linking of all formulations decreased photocatalytic activity while maintaining predictable final elastic moduli.


Assuntos
Células Epiteliais/efeitos dos fármacos , Gelatina/toxicidade , Hidrogéis/toxicidade , Lítio/toxicidade , Ácidos Fosfínicos/toxicidade , Poli-Hidroxietil Metacrilato/toxicidade , Alicerces Teciduais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Elasticidade , Gelatina/química , Humanos , Hidrogéis/síntese química , Teste de Materiais , Poli-Hidroxietil Metacrilato/síntese química
11.
Interface Focus ; 8(3): 20170063, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696093

RESUMO

Ultrananocrystalline diamond (UNCD) has been demonstrated to have attractive features for biomedical applications and can be combined with nanoporous membranes for applications in drug delivery systems, biosensing, immunoisolation and single molecule analysis. In this study, free-standing nanoporous UNCD membranes with pore sizes of 100 or 400 nm were fabricated by directly depositing ultrathin UNCD films on nanoporous silicon nitride membranes and then etching away silicon nitride using reactive ion etching. Successful deposition of UNCD on the substrate with a novel process was confirmed with Raman spectroscopy, X-ray photoelectron spectroscopy, cross-section scanning electron microscopy (SEM) and transmission electron microscopy. Both sample types exhibited uniform geometry and maintained a clear hexagonal pore arrangement. Cellular attachment of SK-N-SH neuroblastoma endothelial cells was examined using confocal microscopy and SEM. Attachment of SK-N-SH cells onto UNCD membranes on both porous regions and solid surfaces was shown, indicating the potential use of UNCD membranes in biomedical applications such as biosensors and tissue engineering scaffolds.

12.
Pharmacol Ther ; 182: 33-55, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28720431

RESUMO

Cellular responses are highly influenced by biochemical and biomechanical interactions with the extracellular matrix (ECM). Due to the impact of ECM architecture on cellular responses, significant research has been dedicated towards developing biomaterials that mimic the physiological environment for design of improved medical devices and tissue engineering scaffolds. Surface topographies with microscale and nanoscale features have demonstrated an effect on numerous cellular responses, including cell adhesion, migration, proliferation, gene expression, protein production, and differentiation; however, relationships between biological responses and surface topographies are difficult to establish due to differences in cell types and biomaterial surface properties. Therefore, it is important to optimize implant surface feature characteristics to elicit desirable biological responses for specific applications. The goal of this work was to review studies investigating the effects of microstructured and nanostructured biomaterials on in vitro biological responses through fabrication of microscale and nanoscale surface topographies, physico-chemical characterization of material surface properties, investigation of protein adsorption dynamics, and evaluation of cellular responses in specific biomedical applications.


Assuntos
Materiais Biocompatíveis , Fenômenos Fisiológicos Celulares , Propriedades de Superfície , Topografia Médica , Humanos , Engenharia Tecidual/métodos
13.
Nanomedicine (Lond) ; 12(17): 2097-2111, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28805153

RESUMO

AIM: The goal of this study was to determine whether bacterial clearance in a rodent model would be impaired upon exposure to gold, silver or silica nanoparticles (NPs). MATERIALS & METHODS: Mice received weekly injections of NPs followed by a challenge of Listeria monocytogenes (LM). On days 3 and 10 after LM injections, the animals were sacrificed and their tissues were collected for elemental analysis, electron microscopy and LM count determination. RESULTS: The untreated and NP-treated animals cleared LM at the same rate suggesting that bioaccumulation of NPs did not increase the animals' susceptibility to bacterial infection. CONCLUSION: The data from this study indicate that the bioaccumulation of NPs does not significantly affect the ability to react to a bacterial challenge.


Assuntos
Listeria monocytogenes/efeitos dos fármacos , Listeriose/tratamento farmacológico , Nanopartículas/química , Administração Intravenosa , Animais , Sobrevivência Celular , Feminino , Ouro/química , Humanos , Listeriose/metabolismo , Listeriose/microbiologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Prata/química , Propriedades de Superfície , Distribuição Tecidual
14.
Part Fibre Toxicol ; 14(1): 25, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716104

RESUMO

BACKGROUND: As nanoparticles (NPs) become more prevalent in the pharmaceutical industry, questions have arisen from both industry and regulatory stakeholders about the long term effects of these materials. This study was designed to evaluate whether gold (10 nm), silver (50 nm), or silica (10 nm) nanoparticles administered intravenously to mice for up to 8 weeks at doses known to be sub-toxic (non-toxic at single acute or repeat dosing levels) and clinically relevant could produce significant bioaccumulation in liver and spleen macrophages. RESULTS: Repeated dosing with gold, silver, and silica nanoparticles did not saturate bioaccumulation in liver or spleen macrophages. While no toxicity was observed with gold and silver nanoparticles throughout the 8 week experiment, some effects including histopathological and serum chemistry changes were observed with silica nanoparticles starting at week 3. No major changes in the splenocyte population were observed during the study for any of the nanoparticles tested. CONCLUSIONS: The clinical impact of these changes is unclear but suggests that the mononuclear phagocytic system is able to handle repeated doses of nanoparticles.


Assuntos
Ouro/toxicidade , Fígado/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas , Dióxido de Silício/toxicidade , Prata/toxicidade , Baço/efeitos dos fármacos , Animais , Biomarcadores/sangue , Feminino , Ouro/administração & dosagem , Ouro/metabolismo , Injeções Intravenosas , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Nanopartículas Metálicas , Camundongos Endogâmicos BALB C , Medição de Risco , Dióxido de Silício/administração & dosagem , Dióxido de Silício/metabolismo , Prata/administração & dosagem , Prata/metabolismo , Baço/metabolismo , Baço/patologia , Fatores de Tempo , Distribuição Tecidual
15.
Toxicol In Vitro ; 44: 248-255, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739488

RESUMO

Porous PMMA is a versatile biomaterial with good biocompatibility but high susceptibility to bacterial colonization, which we mitigated by utilizing immobilized antimicrobial silver nanoparticles (AgNPs). A uniform porous thin film was deposited onto silicon wafers by simultaneously ablating PMMA and silver (Ag) using pulsed laser deposition (PLD) optimized for minimal human cell toxicity and antibacterial efficacy. PMMA without Ag became heavily colonized by E. coli in simulated dynamic conditions, while Ag-containing samples prevented all colonization. ICP-MS analysis demonstrated that the amount of leached Ag after 24h under simulated in vivo conditions (with serum media at 37°C and 5% CO2) increased in proportion to film thickness (and total silver content). 10,000, 14,000, and 20,000 laser pulse-deposited films released 0.76, 1.05, and 1.67µg/mL Ag, respectively, after 24h. Human bone marrow stromal cells (hBMSCs) grown directly on 10,000-pulse films (0.76µg/mL Ag released) for 24-h exhibited no cytotoxicity. Exposure to the remaining films produced cytotoxicity, necrosis, and apoptosis detected using flow cytometry. Examining both leachates and direct cell contact allowed us to develop an in vitro cytotoxicity test method and optimize a novel device material and coating to be nontoxic and bactericidal during both potential initial implantation and external use.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Polimetil Metacrilato/administração & dosagem , Prata/administração & dosagem , Antibacterianos/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Necrose/induzido quimicamente , Polimetil Metacrilato/química , Prata/química
16.
Regul Toxicol Pharmacol ; 85: 108-118, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28137642

RESUMO

Silver nanoparticles (AgNP) are incorporated into medical devices for their anti-microbial characteristics. The potential exposure and toxicity of AgNPs is unknown due to varying physicochemical particle properties and lack of toxicological data. The aim of this safety assessment is to derive a provisional tolerable intake (pTI) value for AgNPs released from blood-contacting medical devices. A literature review of in vivo studies investigating critical health effects induced from intravenous (i. v.) exposure to AgNPs was evaluated by the Annapolis Accords principles and Toxicological Data Reliability Assessment Tool (ToxRTool). The point of departure (POD) was based on an i. v. 28-day repeated AgNP (20 nm) dose toxicity study reporting an increase in relative spleen weight in rats with a 5% lower confidence bound of the benchmark dose (BMDL05) of 0.14 mg/kg bw/day. The POD was extrapolated to humans by a modifying factor of 1,000 to account for intraspecies variability, interspecies differences and lack of long-term toxicity data. The pTI for long-term i. v. exposure to 20 nm AgNPs released from blood-contacting medical devices was 0.14 µg/kg bw/day. This pTI may not be appropriate for nanoparticles of other physicochemical properties or routes of administration. The methodology is appropriate for deriving pTIs for nanoparticles in general.


Assuntos
Equipamentos e Provisões , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Administração Intravenosa , Animais , Feminino , Humanos , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Nível de Efeito Adverso não Observado , Coelhos , Ratos , Medição de Risco , Prata/administração & dosagem , Especificidade da Espécie , Incerteza
17.
Toxicol In Vitro ; 38: 179-192, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27816503

RESUMO

Silver nanoparticles (AgNPs) have generated a great deal of interest in the research, consumer product, and medical product communities due to their antimicrobial and anti-biofouling properties. However, in addition to their antimicrobial action, concerns have been expressed about the potential adverse human health effects of AgNPs. In vitro cytotoxicity studies often are used to characterize the biological response to AgNPs and the results of these studies may be used to identify hazards associated with exposure to AgNPs. Various factors, such as nanomaterial size (diameter), surface area, surface charge, redox potential, surface functionalization, and composition play a role in the development of toxicity in in vitro test systems. In addition, the interference of AgNPs with in vitro cytotoxicity assays may result in false negative or false positive results in some in vitro biological tests. The goal of this review is to: 1) summarize the impact of physical-chemical parameters, including size, shape, surface chemistry and aggregate formation on the in vitro cytotoxic effects of AgNPs; and 2) explore the nature of AgNPs interference in in vitro cytotoxicity assays.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Bioensaio , Humanos , Nanopartículas Metálicas/química , Prata/química , Prata/metabolismo
18.
J Biomed Mater Res A ; 105(1): 253-264, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543370

RESUMO

Nanocrystalline diamond (NCD) coatings have been investigated for improved wear resistance and enhanced hemocompatibility of cardiovascular devices. The goal of this study was to evaluate the effects of NCD surface nanotopography on in vitro hemocompatibility. NCD coatings with small (NCD-S) and large (NCD-L) grain sizes were deposited using microwave plasma chemical vapor deposition and characterized using scanning electron microscopy, atomic force microscopy, contact angle testing, and Raman spectroscopy. NCD-S coatings exhibited average grain sizes of 50-80 nm (RMS 5.8 nm), while NCD-L coatings exhibited average grain sizes of 200-280 nm (RMS 23.1 nm). In vitro hemocompatibility testing using human blood included protein adsorption, hemolysis, nonactivated partial thromboplastin time, platelet adhesion, and platelet activation. Both NCD coatings demonstrated low protein adsorption, a nonhemolytic response, and minimal activation of the plasma coagulation cascade. Furthermore, the NCD coatings exhibited low thrombogenicity with minimal platelet adhesion and aggregation, and similar morphological changes to surface-bound platelets (i.e., activation) in comparison to the HDPE negative control material. For all assays, there were no significant differences in the blood-material interactions of NCD-S versus NCD-L. The two tested NCD coatings, regardless of nanotopography, had similar hemocompatibility profiles compared to the negative control material (HDPE) and should be further evaluated for use in blood-contacting medical devices. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 253-264, 2017.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Materiais Revestidos Biocompatíveis , Teste de Materiais , Nanodiamantes/química , Adesividade Plaquetária/efeitos dos fármacos , Adulto , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Masculino , Tempo de Tromboplastina Parcial
19.
J Mater Sci Mater Med ; 27(12): 187, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27796686

RESUMO

Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5-400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.


Assuntos
Diamante/química , Nanopartículas/química , Nanoestruturas/química , Células da Medula Óssea/citologia , Proliferação de Células , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/química , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Micro-Ondas , Poliestirenos/química , Silício/química , Análise Espectral Raman , Propriedades de Superfície
20.
Toxicol Sci ; 150(2): 473-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26801583

RESUMO

Silver nanoparticles (AgNPs) are incorporated into medical and consumer products to exploit their excellent antimicrobial properties; however, potential mechanisms of toxicity of AgNPs in mammalian cells are not fully understood. The objective of this study was to determine the mechanism of size- and concentration-dependent cytotoxicity of AgNPs in human liver-derived hepatoma (HepG2) cells. Mechanisms of toxicity were explored at subcytotoxic concentrations (≤10 µg/ml AgNPs) and autophagy induction, lysosomal activity, inflammasome-dependent caspase-1 activation, and apoptosis were examined. Using enhanced dark-field light microscopy, hyperspectral imaging, electron microscopy, and energy dispersive X-ray spectroscopy, AgNPs were shown to rapidly accumulate in cytoplasmic vesicles for up to 24 h and 10-nm AgNPs exhibited the highest uptake and accumulation. Autophagy and enhanced lysosomal activity were induced at noncytotoxic concentrations (1 µg/ml; primary particle size:10 > 50 >100 nm), whereas increased caspase-3 activity (associated with apoptosis) was observed at cytotoxic concentrations (10, 25, and 50 µg/ml). Subcytotoxic concentrations of AgNPs enhanced expression of LC3B, a pro-autophagic protein, and CHOP, an apoptosis inducing ER-stress protein, and activation of NLRP3-inflammasome (caspase-1, IL-1ß). Disrupting the autophagy-lysosomal pathway through chloroquine or ATG5-siRNA exacerbated AgNPs-induced caspase-1 activation and lactate dehydrogenase release, suggesting that NLRP3-inflammasome plays an important role in AgNPs-induced cytotoxicity. Overall, 10-nm AgNPs showed the highest cellular responses compared with 50- and 100-nm AgNPs based on equal mass dosimetry. The results indicate the potential of vesicle-engulfed 10-nm AgNPs to induce cytotoxicity by a mechanism involving perturbations in the autophagy-lysosomal system and inflammasome activation.


Assuntos
Autofagia/efeitos dos fármacos , Inflamassomos/metabolismo , Lisossomos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Prata/toxicidade , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Células Hep G2 , Humanos , Lisossomos/ultraestrutura , Nanopartículas Metálicas/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Tamanho da Partícula , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...