Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 991531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466233

RESUMO

Asexual reproduction results in offspring that are genetically identical to the mother. Among apomictic plants (reproducing asexually through seeds) many require paternal genetic contribution for proper endosperm development (pseudogamous endosperm). We examined phenotypic diversity in seed traits using a diverse panel of sexual and apomictic accessions from the genus Boechera. While genetic uniformity resulting from asexual reproduction is expected to reduce phenotypic diversity in seeds produced by apomictic individuals, pseudogamous endosperm, variable endosperm ploidy, and the deviations from 2:1 maternal:paternal genome ratio in endosperm can all contribute to increased phenotypic diversity among apomictic offspring. We characterized seed size variation in 64 diploid sexual and apomictic (diploid and triploid) Boechera lineages. In order to find out whether individual seed size was related to endosperm ploidy we performed individual seed measurements (projected area and mass) using the phenoSeeder robot system and flow cytometric seed screen. In order to test whether individual seed size had an effect on resulting fitness we performed a controlled growth experiment and recorded seedling life history traits (germination success, germination timing, and root growth rate). Seeds with triploid embryos were 33% larger than those with diploid embryos, but no average size difference was found between sexual and apomictic groups. We identified a maternal effect whereby chloroplast lineage 2 had 30% larger seeds than lineage 3, despite having broad and mostly overlapping geographic ranges. Apomictic seeds were not more uniform in size than sexual seeds, despite genetic uniformity of the maternal gametophyte in the former. Among specific embryo/endosperm ploidy combinations, seeds with tetraploid (automomous) endosperm were on average smaller, and the proportion of such seeds was highest in apomicts. Larger seeds germinated more quickly than small seeds, and lead to higher rates of root growth in young seedlings. Seed mass is under balancing selection in Boechera, and it is an important predictor of several traits, including germination probability and timing, root growth rates, and developmental abnormalities in apomictic accessions.

2.
New Phytol ; 230(2): 804-820, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421128

RESUMO

The mechanisms of initiation and transmission of apomixis (asexual reproduction through seeds) in natural plant populations are important for understanding the evolution of reproductive variation. Here, we used the phylogenetic diversity of the genus Boechera (Brassicaceae), together with natural diversity in pollen types produced by apomictic lines, to test whether hybridization triggers the transition to asexuality, and whether a 'triploid bridge' is required for the formation of polyploid apomicts. We performed crosses between diploid sexual recipient and diploid apomictic donor lines and tested whether the mating system (interspecific hybridization vs intraspecific outcrossing) or pollen type (haploid vs diploid) influenced the transmission of apomixis from diploid apomictic donors into sexual recipients. We used genetic markers and flow cytometric analyses of embryo and endosperm in seeds to infer the reproductive mode. Within a single generation, initiation of both diploid and polyploid apomixis in sexual Boechera can occur. Diploid apomixis is transmitted through haploid pollen (infectious asexuality) and polyploids can form through multiple pathways. The three functional elements of apomixis occasionally segregate. Variation in pollen ploidy and the segregation of apomixis elements drive reproductive diversity of hybrids and outcrosses and can be utilized for apomixis initiation in crop breeding programs.


Assuntos
Apomixia , Melhoramento Vegetal , Apomixia/genética , Haploidia , Filogenia , Pólen/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...