Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 321(5886): 226-8, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18621664

RESUMO

The cost of photovoltaic power can be reduced with organic solar concentrators. These are planar waveguides with a thin-film organic coating on the face and inorganic solar cells attached to the edges. Light is absorbed by the coating and reemitted into waveguide modes for collection by the solar cells. We report single- and tandem-waveguide organic solar concentrators with quantum efficiencies exceeding 50% and projected power conversion efficiencies as high as 6.8%. The exploitation of near-field energy transfer, solid-state solvation, and phosphorescence enables 10-fold increases in the power obtained from photovoltaic cells, without the need for solar tracking.

2.
Nat Mater ; 5(12): 950-6, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17128260

RESUMO

Blends and other multicomponent systems are used in various polymer applications to meet multiple requirements that cannot be fulfilled by a single material. In polymer optoelectronic devices it is often desirable to combine the semiconducting properties of the conjugated species with the excellent mechanical properties of certain commodity polymers. Here we investigate bicomponent blends comprising semicrystalline regioregular poly(3-hexylthiophene) and selected semicrystalline commodity polymers, and show that, owing to a highly favourable, crystallization-induced phase segregation of the two components, during which the semiconductor is predominantly expelled to the surfaces of cast films, we can obtain vertically stratified structures in a one-step process. Incorporating these as active layers in polymer field-effect transistors, we find that the concentration of the semiconductor can be reduced to values as low as 3 wt% without any degradation in device performance. This is in stark contrast to blends containing an amorphous insulating polymer, for which significant reduction in electrical performance was reported. Crystalline-crystalline/semiconducting-insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...