Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Math Biosci Eng ; 21(2): 1979-2003, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454671

RESUMO

In infectious disease models, it is known that mechanisms such as births, seasonality in transmission and pathogen evolution can generate oscillations in infection numbers. We show how waning immunity is also a mechanism that is sufficient on its own to enable sustained oscillations. When previously infected or vaccinated individuals lose full protective immunity, they become partially susceptible to reinfections. This partial immunity subsequently wanes over time, making individuals more susceptible to reinfections and potentially more infectious if infected. Losses of full and partial immunity lead to a surge in infections, which is the precursor of oscillations. We present a discrete-time Susceptible-Infectious-Immune-Waned-Infectious (SIRWY) model that features the waning of fully immune individuals (as a distribution of time at which individuals lose fully immunity) and the gradual loss of partial immunity (as increases in susceptibility and potential infectiousness over time). A special case of SIRWY is the discrete-time SIRS model with geometric distributions for waning and recovery. Its continuous-time analogue is the classic SIRS with exponential distributions, which does not produce sustained oscillations for any choice of parameters. We show that the discrete-time version can produce sustained oscillations and that the oscillatory regime disappears as discrete-time tends to continuous-time. A different special case of SIRWY is one with fixed times for waning and recovery. We show that this simpler model can also produce sustained oscillations. In conclusion, under certain feature and parameter choices relating to how exactly immunity wanes, fluctuations in infection numbers can be sustained without the need for any additional mechanisms.


Assuntos
Reinfecção , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Suscetibilidade a Doenças
2.
Sci Rep ; 13(1): 12079, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495730

RESUMO

Collections of genetic sequences belonging to related organisms contain information on the evolutionary constraints to which the organisms have been subjected. Heavily constrained regions can be investigated to understand their roles in an organism's life cycle, and drugs can be sought to disrupt these roles. In organisms with low genetic diversity, such as newly-emerged pathogens, it is key to obtain this information early to develop new treatments. Here, we present methods that ensure we can leverage all the information available in a low-signal, low-noise set of sequences, to find contiguous regions of relatively conserved nucleic acid. We demonstrate the application of these methods by analysing over 5 million genome sequences of the recently-emerged RNA virus SARS-CoV-2 and correlating these results with an analysis of 119 genome sequences of SARS-CoV. We propose the precise location of a previously described packaging signal, and discuss explanations for other regions of high conservation.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , SARS-CoV-2/genética , COVID-19/genética , Motivos de Nucleotídeos , Alinhamento de Sequência , Genoma Viral , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
3.
J Theor Biol ; 567: 111493, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37054971

RESUMO

Virus evolution shapes the epidemiological patterns of infectious disease, particularly via evasion of population immunity. At the individual level, host immunity itself may drive viral evolution towards antigenic escape. Using compartmental SIR-style models with imperfect vaccination, we allow the probability of immune escape to differ in vaccinated and unvaccinated hosts. As the relative contribution to selection in these different hosts varies, the overall effect of vaccination on the antigenic escape pressure at the population level changes. We find that this relative contribution to escape is important for understanding the effects of vaccination on the escape pressure and we draw out some fairly general patterns. If vaccinated hosts do not contribute much more than unvaccinated hosts to the escape pressure, then increasing vaccination always reduces the overall escape pressure. In contrast, if vaccinated hosts contribute significantly more than unvaccinated hosts to the population level escape pressure, then the escape pressure is maximised for intermediate vaccination levels. Past studies find only that the escape pressure is maximal for intermediate levels with fixed extreme assumptions about this relative contribution. Here we show that this result does not hold across the range of plausible assumptions for the relative contribution to escape from vaccinated and unvaccinated hosts. We also find that these results depend on the vaccine efficacy against transmission, particularly through the partial protection against infection. This work highlights the potential value of understanding better how the contribution to antigenic escape pressure depends on individual host immunity.


Assuntos
Vírus , Humanos , Vacinação , Dinâmica Populacional
4.
Epidemics ; 42: 100659, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36758342

RESUMO

Universities provide many opportunities for the spread of infectious respiratory illnesses. Students are brought together into close proximity from all across the world and interact with one another in their accommodation, through lectures and small group teaching and in social settings. The COVID-19 global pandemic has highlighted the need for sufficient data to help determine which of these factors are important for infectious disease transmission in universities and hence control university morbidity as well as community spillover. We describe the data from a previously unpublished self-reported university survey of coughs, colds and influenza-like symptoms collected in Cambridge, UK, during winter 2007-2008. The online survey collected information on symptoms and socio-demographic, academic and lifestyle factors. There were 1076 responses, 97% from University of Cambridge students (5.7% of the total university student population), 3% from staff and <1% from other participants, reporting onset of symptoms between September 2007 and March 2008. Undergraduates are seen to report symptoms earlier in the term than postgraduates; differences in reported date of symptoms are also seen between subjects and accommodation types, although these descriptive results could be confounded by survey biases. Despite the historical and exploratory nature of the study, this is one of few recent detailed datasets of influenza-like infection in a university context and is especially valuable to share now to improve understanding of potential transmission dynamics in universities during the current COVID-19 pandemic.


Assuntos
COVID-19 , Resfriado Comum , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Pandemias , Tosse/epidemiologia , Resfriado Comum/epidemiologia , COVID-19/epidemiologia
5.
J Theor Biol ; 557: 111332, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36323393

RESUMO

In March 2020 mathematics became a key part of the scientific advice to the UK government on the pandemic response to COVID-19. Mathematical and statistical modelling provided critical information on the spread of the virus and the potential impact of different interventions. The unprecedented scale of the challenge led the epidemiological modelling community in the UK to be pushed to its limits. At the same time, mathematical modellers across the country were keen to use their knowledge and skills to support the COVID-19 modelling effort. However, this sudden great interest in epidemiological modelling needed to be coordinated to provide much-needed support, and to limit the burden on epidemiological modellers already very stretched for time. In this paper we describe three initiatives set up in the UK in spring 2020 to coordinate the mathematical sciences research community in supporting mathematical modelling of COVID-19. Each initiative had different primary aims and worked to maximise synergies between the various projects. We reflect on the lessons learnt, highlighting the key roles of pre-existing research collaborations and focal centres of coordination in contributing to the success of these initiatives. We conclude with recommendations about important ways in which the scientific research community could be better prepared for future pandemics. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , Aprendizagem , Matemática , Reino Unido/epidemiologia
6.
Stat Methods Med Res ; 31(9): 1675-1685, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34569883

RESUMO

Since the beginning of the COVID-19 pandemic, the reproduction number [Formula: see text] has become a popular epidemiological metric used to communicate the state of the epidemic. At its most basic, [Formula: see text] is defined as the average number of secondary infections caused by one primary infected individual. [Formula: see text] seems convenient, because the epidemic is expanding if [Formula: see text] and contracting if [Formula: see text]. The magnitude of [Formula: see text] indicates by how much transmission needs to be reduced to control the epidemic. Using [Formula: see text] in a naïve way can cause new problems. The reasons for this are threefold: (1) There is not just one definition of [Formula: see text] but many, and the precise definition of [Formula: see text] affects both its estimated value and how it should be interpreted. (2) Even with a particular clearly defined [Formula: see text], there may be different statistical methods used to estimate its value, and the choice of method will affect the estimate. (3) The availability and type of data used to estimate [Formula: see text] vary, and it is not always clear what data should be included in the estimation. In this review, we discuss when [Formula: see text] is useful, when it may be of use but needs to be interpreted with care, and when it may be an inappropriate indicator of the progress of the epidemic. We also argue that careful definition of [Formula: see text], and the data and methods used to estimate it, can make [Formula: see text] a more useful metric for future management of the epidemic.


Assuntos
COVID-19 , Número Básico de Reprodução , COVID-19/epidemiologia , Previsões , Humanos , Pandemias/prevenção & controle , Reprodução
7.
R Soc Open Sci ; 8(8): 210310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34386249

RESUMO

In this paper, we present work on SARS-CoV-2 transmission in UK higher education settings using multiple approaches to assess the extent of university outbreaks, how much those outbreaks may have led to spillover in the community, and the expected effects of control measures. Firstly, we found that the distribution of outbreaks in universities in late 2020 was consistent with the expected importation of infection from arriving students. Considering outbreaks at one university, larger halls of residence posed higher risks for transmission. The dynamics of transmission from university outbreaks to wider communities is complex, and while sometimes spillover does occur, occasionally even large outbreaks do not give any detectable signal of spillover to the local population. Secondly, we explored proposed control measures for reopening and keeping open universities. We found the proposal of staggering the return of students to university residence is of limited value in terms of reducing transmission. We show that student adherence to testing and self-isolation is likely to be much more important for reducing transmission during term time. Finally, we explored strategies for testing students in the context of a more transmissible variant and found that frequent testing would be necessary to prevent a major outbreak.

8.
R Soc Open Sci ; 8(7): 210530, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34277027

RESUMO

As a countermeasure to the SARS-CoV-2 pandemic, there has been swift development and clinical trial assessment of candidate vaccines, with subsequent deployment as part of mass vaccination campaigns. However, the SARS-CoV-2 virus has demonstrated the ability to mutate and develop variants, which can modify epidemiological properties and potentially also the effectiveness of vaccines. The widespread deployment of highly effective vaccines may rapidly exert selection pressure on the SARS-CoV-2 virus directed towards mutations that escape the vaccine-induced immune response. This is particularly concerning while infection is widespread. By developing and analysing a mathematical model of two population groupings with differing vulnerability and contact rates, we explore the impact of the deployment of vaccines among the population on the reproduction ratio, cases, disease abundance and vaccine escape pressure. The results from this model illustrate two insights: (i) vaccination aimed at reducing prevalence could be more effective at reducing disease than directly vaccinating the vulnerable; (ii) the highest risk for vaccine escape can occur at intermediate levels of vaccination. This work demonstrates a key principle: the careful targeting of vaccines towards particular population groups could reduce disease as much as possible while limiting the risk of vaccine escape.

9.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200263, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34053265

RESUMO

Analytical expressions and approximations from simple models have performed a pivotal role in our understanding of infectious disease epidemiology. During the current COVID-19 pandemic, while there has been proliferation of increasingly complex models, still the most basic models have provided the core framework for our thinking and interpreting policy decisions. Here, classic results are presented that give insights into both the role of transmission-reducing interventions (such as social distancing) in controlling an emerging epidemic, and also what would happen if insufficient control is applied. Though these are simple results from the most basic of epidemic models, they give valuable benchmarks for comparison with the outputs of more complex modelling approaches. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Assuntos
COVID-19/epidemiologia , Modelos Teóricos , Pandemias , COVID-19/virologia , Humanos , Distanciamento Físico , SARS-CoV-2/patogenicidade , Viagem , Reino Unido/epidemiologia
10.
Lancet Infect Dis ; 21(7): 913-914, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33861968
11.
Proc Biol Sci ; 287(1932): 20201405, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781946

RESUMO

Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Imunidade Coletiva , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , COVID-19 , Criança , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Erradicação de Doenças , Características da Família , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Instituições Acadêmicas , Estudos Soroepidemiológicos
12.
Lancet Infect Dis ; 20(10): 1151-1160, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32559451

RESUMO

BACKGROUND: The isolation of symptomatic cases and tracing of contacts has been used as an early COVID-19 containment measure in many countries, with additional physical distancing measures also introduced as outbreaks have grown. To maintain control of infection while also reducing disruption to populations, there is a need to understand what combination of measures-including novel digital tracing approaches and less intensive physical distancing-might be required to reduce transmission. We aimed to estimate the reduction in transmission under different control measures across settings and how many contacts would be quarantined per day in different strategies for a given level of symptomatic case incidence. METHODS: For this mathematical modelling study, we used a model of individual-level transmission stratified by setting (household, work, school, or other) based on BBC Pandemic data from 40 162 UK participants. We simulated the effect of a range of different testing, isolation, tracing, and physical distancing scenarios. Under optimistic but plausible assumptions, we estimated reduction in the effective reproduction number and the number of contacts that would be newly quarantined each day under different strategies. RESULTS: We estimated that combined isolation and tracing strategies would reduce transmission more than mass testing or self-isolation alone: mean transmission reduction of 2% for mass random testing of 5% of the population each week, 29% for self-isolation alone of symptomatic cases within the household, 35% for self-isolation alone outside the household, 37% for self-isolation plus household quarantine, 64% for self-isolation and household quarantine with the addition of manual contact tracing of all contacts, 57% with the addition of manual tracing of acquaintances only, and 47% with the addition of app-based tracing only. If limits were placed on gatherings outside of home, school, or work, then manual contact tracing of acquaintances alone could have an effect on transmission reduction similar to that of detailed contact tracing. In a scenario where 1000 new symptomatic cases that met the definition to trigger contact tracing occurred per day, we estimated that, in most contact tracing strategies, 15 000-41 000 contacts would be newly quarantined each day. INTERPRETATION: Consistent with previous modelling studies and country-specific COVID-19 responses to date, our analysis estimated that a high proportion of cases would need to self-isolate and a high proportion of their contacts to be successfully traced to ensure an effective reproduction number lower than 1 in the absence of other measures. If combined with moderate physical distancing measures, self-isolation and contact tracing would be more likely to achieve control of severe acute respiratory syndrome coronavirus 2 transmission. FUNDING: Wellcome Trust, UK Engineering and Physical Sciences Research Council, European Commission, Royal Society, Medical Research Council.


Assuntos
Controle de Doenças Transmissíveis/métodos , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Número Básico de Reprodução , Betacoronavirus , COVID-19 , Busca de Comunicante/métodos , Busca de Comunicante/estatística & dados numéricos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Humanos , Incidência , Programas de Rastreamento , Isolamento de Pacientes , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Quarentena , SARS-CoV-2 , Reino Unido/epidemiologia
13.
J R Soc Interface ; 17(164): 20190628, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32183640

RESUMO

Existing methods to infer the relative roles of age groups in epidemic transmission can normally only accommodate a few age classes, and/or require data that are highly specific for the disease being studied. Here, symbolic transfer entropy (STE), a measure developed to identify asymmetric transfer of information between stochastic processes, is presented as a way to reveal asymmetric transmission patterns between age groups in an epidemic. STE provides a ranking of which age groups may dominate transmission, rather than a reconstruction of the explicit between-age-group transmission matrix. Using simulations, we establish that STE can identify which age groups dominate transmission even when there are differences in reporting rates between age groups and even if the data are noisy. Then, the pairwise STE is calculated between time series of influenza-like illness for 12 age groups in 884 US cities during the autumn of 2009. Elevated STE from 5 to 19 year-olds indicates that school-aged children were likely the most important transmitters of infection during the autumn wave of the 2009 pandemic in the USA. The results may be partially confounded by higher rates of physician-seeking behaviour in children compared to adults, but it is unlikely that differences in reporting rates can explain the observed differences in STE.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Adulto , Criança , Cidades , Entropia , Humanos , Influenza Humana/epidemiologia , Pandemias
15.
Nat Rev Phys ; 2(6): 274-275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34172979

RESUMO

Many physicists want to use their mathematical modelling skills to study the COVID-19 pandemic. Julia Gog, a mathematical epidemiologist, explains some ways to contribute.

16.
PLoS Comput Biol ; 15(9): e1007345, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545786

RESUMO

HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5' end of env.


Assuntos
Sequência Conservada/genética , Genoma Viral/genética , HIV-1/genética , Algoritmos , Códon/genética , Biologia Computacional , HIV-1/química , HIV-1/ultraestrutura , Modelos Genéticos , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , RNA Viral/ultraestrutura
17.
Epidemics ; 26: 86-94, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30327253

RESUMO

A key issue in infectious disease epidemiology is to identify and predict geographic sites of epidemic establishment that contribute to onward spread, especially in the context of invasion waves of emerging pathogens. Conventional wisdom suggests that these sites are likely to be in densely-populated, well-connected areas. For pandemic influenza, however, epidemiological data have not been available at a fine enough geographic resolution to test this assumption. Here, we make use of fine-scale influenza-like illness incidence data derived from electronic medical claims records gathered from 834 3-digit ZIP (postal) codes across the US to identify the key geographic establishment sites, or "hubs", of the autumn wave of the 2009 A/H1N1pdm influenza pandemic in the United States. A mechanistic spatial transmission model is fit to epidemic onset times inferred from the data. Hubs are identified by tracing the most probable transmission routes back to a likely first establishment site. Four hubs are identified: two in the southeastern US, one in the central valley of California, and one in the midwestern US. According to the model, 75% of the 834 observed ZIP-level outbreaks in the US were seeded by these four hubs or their epidemiological descendants. Counter-intuitively, the pandemic hubs do not coincide with large and well-connected cities, indicating that factors beyond population density and travel volume are necessary to explain the establishment sites of the major autumn wave of the pandemic. Geographic regions are identified where infection can be statistically traced back to a hub, providing a testable prediction of the outbreak's phylogeography. Our method therefore provides an important way forward to reconcile spatial diffusion patterns inferred from epidemiological surveillance data and pathogen sequence data.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana/epidemiologia , Pandemias/estatística & dados numéricos , Viagem , California/epidemiologia , Surtos de Doenças , Humanos , Incidência , Estações do Ano , Sudeste dos Estados Unidos/epidemiologia , Estados Unidos/epidemiologia
18.
Science ; 362(6410): 75-79, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287659

RESUMO

Influenza epidemics vary in intensity from year to year, driven by climatic conditions and by viral antigenic evolution. However, important spatial variation remains unexplained. Here we show predictable differences in influenza incidence among cities, driven by population size and structure. Weekly incidence data from 603 cities in the United States reveal that epidemics in smaller cities are focused on shorter periods of the influenza season, whereas in larger cities, incidence is more diffuse. Base transmission potential estimated from city-level incidence data is positively correlated with population size and with spatiotemporal organization in population density, indicating a milder response to climate forcing in metropolises. This suggests that urban centers incubate critical chains of transmission outside of peak climatic conditions, altering the spatiotemporal geometry of herd immunity.


Assuntos
Epidemias , Umidade , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Urbanização , Antígenos Virais/genética , Antígenos Virais/imunologia , Cidades/epidemiologia , Evolução Molecular , Humanos , Incidência , Influenza Humana/virologia , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Densidade Demográfica , Análise Espaço-Temporal , Estados Unidos/epidemiologia
19.
PLoS One ; 13(4): e0195763, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29652903

RESUMO

We present a fast, robust and parsimonious approach to detecting signals in an ordered sequence of numbers. Our motivation is in seeking a suitable method to take a sequence of scores corresponding to properties of positions in virus genomes, and find outlying regions of low scores. Suitable statistical methods without using complex models or making many assumptions are surprisingly lacking. We resolve this by developing a method that detects regions of low score within sequences of real numbers. The method makes no assumptions a priori about the length of such a region; it gives the explicit location of the region and scores it statistically. It does not use detailed mechanistic models so the method is fast and will be useful in a wide range of applications. We present our approach in detail, and test it on simulated sequences. We show that it is robust to a wide range of signal morphologies, and that it is able to capture multiple signals in the same sequence. Finally we apply it to viral genomic data to identify regions of evolutionary conservation within influenza and rotavirus.


Assuntos
Biologia Computacional/métodos , Genoma Viral , Genômica/métodos , Algoritmos , Evolução Biológica , Simulação por Computador , Bases de Dados Genéticas , Variação Genética , Humanos
20.
J Infect Dis ; 214(suppl_4): S380-S385, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830112

RESUMO

While big data have proven immensely useful in fields such as marketing and earth sciences, public health is still relying on more traditional surveillance systems and awaiting the fruits of a big data revolution. A new generation of big data surveillance systems is needed to achieve rapid, flexible, and local tracking of infectious diseases, especially for emerging pathogens. In this opinion piece, we reflect on the long and distinguished history of disease surveillance and discuss recent developments related to use of big data. We start with a brief review of traditional systems relying on clinical and laboratory reports. We then examine how large-volume medical claims data can, with great spatiotemporal resolution, help elucidate local disease patterns. Finally, we review efforts to develop surveillance systems based on digital and social data streams, including the recent rise and fall of Google Flu Trends. We conclude by advocating for increased use of hybrid systems combining information from traditional surveillance and big data sources, which seems the most promising option moving forward. Throughout the article, we use influenza as an exemplar of an emerging and reemerging infection which has traditionally been considered a model system for surveillance and modeling.


Assuntos
Doenças Transmissíveis/epidemiologia , Coleta de Dados/métodos , Processamento Eletrônico de Dados/métodos , Monitoramento Epidemiológico , Humanos , Revisão da Utilização de Seguros , Mídias Sociais , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...