Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(5): e0040824, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619241

RESUMO

In this study, we use pan-genomics to characterize the genomic variability of the widely dispersed halophilic archaeal species Halorubrum ezzemoulense (Hez). We include a multi-regional sampling of newly sequenced, high-quality draft genomes. The pan-genome graph of the species reveals 50 genomic islands that represent rare accessory genetic capabilities available to members. Most notably, we observe rearrangements that have led to the insertion/recombination/replacement of mutually exclusive genomic islands in equivalent genome positions ("homeocassettes"). These conflicting islands encode for similar functions, but homologs from islands located between the same core genes exhibit high divergence on the amino acid level, while the neighboring core genes are nearly identical. Both islands of a homeocassette often coexist in the same geographic location, suggesting that either island may be beyond the reach of selective sweeps and that these loci of divergence between Hez members are maintained and persist long term. This implies that subsections of the population have different niche preferences and rare metabolic capabilities. After an evaluation of the gene content in the homeocassettes, we speculate that these islands may play a role in the speciation, niche adaptability, and group selection dynamics in Hez. Though homeocassettes are first described in this study, similar replacements and divergence of genes on genomic islands have been previously reported in other Haloarchaea and distantly related Archaea, suggesting that homeocassettes may be a feature in a wide range of organisms outside of Hez.IMPORTANCEThis study catalogs the rare genes discovered in strains of the species Halorubrum ezzemoulense (Hez), an obligate halophilic archaeon, through the perspective of its pan-genome. These rare genes are often found to be arranged on islands that confer metabolic and transport functions and contain genes that have eluded previous studies. The discovery of divergent, but homologous islands occupying equivalent genome positions ("homeocassettes") in different genomes, reveals significant new information on genome evolution in Hez. Homeocassette pairs encode for similar functions, but their dissimilarity and distribution imply high rates of recombination, different specializations, and niche preferences in Hez. The coexistence of both islands of a homeocassette pair in multiple environments demonstrates that both islands are beyond the reach of selective sweeps and that these genome content differences between strains persist long term. The switch between islands through recombination under different environmental conditions may lead to a greater range of niche adaptability in Hez.


Assuntos
Genoma Arqueal , Ilhas Genômicas , Halorubrum , Halorubrum/genética , Halorubrum/classificação , Genômica , Evolução Molecular , Variação Genética , Filogenia
2.
PNAS Nexus ; 2(11): pgad354, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38024399

RESUMO

Inteins are mobile genetic elements that invade conserved genes across all domains of life and viruses. In some instances, a single gene will have several intein insertion sites. In Haloarchaea, the minichromosome maintenance (MCM) protein at the core of replicative DNA helicase contains four intein insertion sites within close proximity, where two of these sites (MCM-a and MCM-d) are more likely to be invaded. A haloarchaeon that harbors both MCM-a and MCM-d inteins, Haloferax mediterranei, was studied in vivo to determine intein invasion dynamics and the interactions between neighboring inteins. Additionally, invasion frequencies and the conservation of insertion site sequences in 129 Haloferacales mcm homologs were analyzed to assess intein distribution across the order. We show that the inteins at MCM-a and MCM-d recognize and cleave their respective target sites and, in the event that only one empty intein invasion site is present, readily initiate homing (i.e. single homing). However, when two inteins are present co-homing into an intein-free target sequence is much less effective. The two inteins are more effective when invading alleles that already contain an intein at one of the two sites. Our in vivo and computational studies also support that having a proline in place of a serine as the first C-terminal extein residue of the MCM-d insertion site prevents successful intein splicing, but does not stop recognition of the insertion site by the intein's homing endonuclease.

3.
Genes (Basel) ; 14(2)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36833214

RESUMO

Inteins, often referred to as protein introns, are highly mobile genetic elements that invade conserved genes throughout the tree of life. Inteins have been found to invade a wide variety of key genes within actinophages. While in the process of conducting a survey of these inteins in actinophages, we discovered that one protein family of methylases contained a putative intein, and two other unique insertion elements. These methylases are known to occur commonly in phages as orphan methylases (possibly as a form of resistance to restriction-modification systems). We found that the methylase family is not conserved within phage clusters and has a disparate distribution across divergent phage groups. We determined that two of the three insertion elements have a patchy distribution within the methylase protein family. Additionally, we found that the third insertion element is likely a second homing endonuclease, and that all three elements (the intein, the homing endonuclease, and what we refer to as the ShiLan domain) have different insertion sites that are conserved in the methylase gene family. Furthermore, we find strong evidence that both the intein and ShiLan domain are partaking in long-distance horizontal gene transfer events between divergent methylases in disparate phage hosts within the already dispersed methylase distribution. The reticulate evolutionary history of methylases and their insertion elements reveals high rates of gene transfer and within-gene recombination in actinophages.


Assuntos
Evolução Molecular , Inteínas , Inteínas/genética , Transferência Genética Horizontal , Endonucleases/genética , DNA
4.
Structure ; 31(3): 282-294.e5, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36649709

RESUMO

Many double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood. Using cryo-EM structure determination of 10 capsids, structural comparisons, phylogenetic analyses, and Alphafold predictions, we have constructed a detailed structural dendrogram describing the evolution of capsid structural stability within the actinobacteriophages. We show that the actinobacteriophage major capsid proteins can be classified into 15 groups based upon their HK97-fold.


Assuntos
Bacteriófagos , Proteínas do Capsídeo , Proteínas do Capsídeo/química , Capsídeo/química , Filogenia , Bacteriófagos/metabolismo , Montagem de Vírus , Microscopia Crioeletrônica
5.
Syst Biol ; 71(2): 396-409, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289044

RESUMO

Whole-genome comparisons based on average nucleotide identities (ANI) and the genome-to-genome distance calculator have risen to prominence in rapidly classifying prokaryotic taxa using whole-genome sequences. Some implementations have even been proposed as a new standard in species classification and have become a common technique for papers describing newly sequenced genomes. However, attempts to apply whole-genome divergence data to the delineation of higher taxonomic units and to phylogenetic inference have had difficulty matching those produced by more complex phylogenetic methods. We present a novel method for generating statistically supported phylogenies of archaeal and bacterial groups using a combined ANI and alignment fraction-based metric. For the test cases to which we applied the developed approach, we obtained results comparable with other methodologies up to at least the family level. The developed method uses nonparametric bootstrapping to gauge support for inferred groups. This method offers the opportunity to make use of whole-genome comparison data, that is already being generated, to quickly produce phylogenies including support for inferred groups. Additionally, the developed ANI methodology can assist the classification of higher taxonomic groups.[Average nucleotide identity (ANI); genome evolution; prokaryotic species delineation; taxonomy.].


Assuntos
Genoma Bacteriano , Nucleotídeos , Filogenia , Células Procarióticas , Análise de Sequência de DNA/métodos
6.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390574

RESUMO

Assessing the compatibility between gene family phylogenies is a crucial and often computationally demanding step in many phylogenomic analyses. Here, we describe the Evolutionary Similarity Index (IES), a means to assess shared evolution between gene families using a weighted orthogonal distance regression model applied to sequence distances. The utilization of pairwise distance matrices circumvents comparisons between gene tree topologies, which are inherently uncertain and sensitive to evolutionary model choice, phylogenetic reconstruction artifacts, and other sources of error. Furthermore, IES enables the many-to-many pairing of multiple copies between similarly evolving gene families. This is done by selecting non-overlapping pairs of copies, one from each assessed family, and yielding the least sum of squared residuals. Analyses of simulated gene family data sets show that IES's accuracy is on par with popular tree-based methods while also less susceptible to noise introduced by sequence alignment and evolutionary model fitting. Applying IES to an empirical data set of 1,322 genes from 42 archaeal genomes identified eight major clusters of gene families with compatible evolutionary trends. The most cohesive cluster consisted of 62 genes with compatible evolutionary signal, which occur as both single-copy and multiple homologs per genome; phylogenetic analysis of concatenated alignments from this cluster produced a tree closely matching previously published species trees for Archaea. Four other clusters are mainly composed of accessory genes with limited distribution among Archaea and enriched toward specific metabolic functions. Pairwise evolutionary distances obtained from these accessory gene clusters suggest patterns of interphyla horizontal gene transfer. An IES implementation is available at https://github.com/lthiberiol/evolSimIndex.


Assuntos
Evolução Molecular , Genoma Arqueal , Archaea/genética , Filogenia , Alinhamento de Sequência
7.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255041

RESUMO

Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; whereas the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the Halobacteriales, and Archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (distantly related groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the Asgardarchaea, TACK Group, euryarchaeota, and the DPANN superphylum. In addition, we assembled draft genomes from seven new representatives of the Nanohaloarchaea from distinct geographic locations. Phylogenies derived from these data imply that the highly conserved ATP synthase catalytic/noncatalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. We also employ a novel gene family distance clustering strategy which shows this sisterhood relationship is not likely the result of a recent gene transfer. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum, in particular, the inclusion of the Nanohaloarchaea in DPANN.


Assuntos
Genoma Arqueal , Halobacteriales , Archaea/genética , Halobacteriales/genética , Filogenia
8.
Mol Biol Evol ; 38(6): 2639-2659, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33565580

RESUMO

Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the "scale" of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multigene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale data set of over 22,000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multigene transfer. Among other insights, we find that 1) the observed relative frequency of HMGT increases as divergence between genomes increases, 2) HMGTs often have conserved gene functions, and 3) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.


Assuntos
Aeromonas/genética , Transferência Genética Horizontal , Genômica/métodos , Software
9.
Microbiologyopen ; 9(7): e1047, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32352651

RESUMO

Halophilic archaea from the genus Halorubrum possess two extraordinarily diverged archaellin genes, flaB1 and flaB2. To clarify roles for each archaellin, we compared two natural Halorubrum lacusprofundi strains: One of them contains both archaellin genes, and the other has the flaB2 gene only. Both strains synthesize functional archaella; however, the strain, where both archaellins are present, is more motile. In addition, we expressed these archaellins in a Haloferax volcanii strain from which the endogenous archaellin genes were deleted. Three Hfx. volcanii strains expressing Hrr. lacusprofundi archaellins produced functional filaments consisting of only one (FlaB1 or FlaB2) or both (FlaB1/FlaB2) archaellins. All three strains were motile, although there were profound differences in the efficiency of motility. Both native and recombinant FlaB1/FlaB2 filaments have greater thermal stability and resistance to low salinity stress than single-component filaments. Functional supercoiled Hrr. lacusprofundi archaella can be composed of either single archaellin: FlaB2 or FlaB1; however, the two divergent archaellin subunits provide additional stabilization to the archaellum structure and thus adaptation to a wider range of external conditions. Comparative genomic analysis suggests that the described combination of divergent archaellins is not restricted to Hrr. lacusprofundi, but is occurring also in organisms from other haloarchaeal genera.


Assuntos
Proteínas Arqueais/genética , Flagelina/genética , Halorubrum/genética , Halorubrum/metabolismo , Locomoção/genética , Sequência de Bases , DNA Arqueal/genética , Halorubrum/classificação , Reação em Cadeia da Polimerase
10.
PLoS One ; 14(6): e0214035, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31163020

RESUMO

The genetic determinants of bacterial pathogenicity are highly variable between species and strains. However, a factor that is commonly associated with virulent Gram-negative bacteria, including many Aeromonas spp., is the type 3 secretion system (T3SS), which is used to inject effector proteins into target eukaryotic cells. In this study, we developed a bioinformatics pipeline to identify T3SS effector proteins, applied this approach to the genomes of 105 Aeromonas strains isolated from environmental, mutualistic, or pathogenic contexts and evaluated the cytotoxicity of the identified effectors through their heterologous expression in yeast. The developed pipeline uses a two-step approach, where candidate Aeromonas gene families are initially selected using Hidden Markov Model (HMM) profile searches against the Virulence Factors DataBase (VFDB), followed by strict comparisons against positive and negative control datasets, greatly reducing the number of false positives. This approach identified 21 Aeromonas T3SS likely effector families, of which 8 represent known or characterized effectors, while the remaining 13 have not previously been described in Aeromonas. We experimentally validated our in silico findings by assessing the cytotoxicity of representative effectors in Saccharomyces cerevisiae BY4741, with 15 out of 21 assayed proteins eliciting a cytotoxic effect in yeast. The results of this study demonstrate the utility of our approach, combining a novel in silico search method with in vivo experimental validation, and will be useful in future research aimed at identifying and authenticating bacterial effector proteins from other genera.


Assuntos
Aeromonas/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/toxicidade , Aeromonas/genética , Aeromonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Biologia Computacional/métodos , Simulação por Computador , Genoma Bacteriano , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Virulência/genética
11.
Genes (Basel) ; 10(3)2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893937

RESUMO

Restriction⁻modification (RM) systems in bacteria are implicated in multiple biological roles ranging from defense against parasitic genetic elements, to selfish addiction cassettes, and barriers to gene transfer and lineage homogenization. In bacteria, DNA-methylation without cognate restriction also plays important roles in DNA replication, mismatch repair, protein expression, and in biasing DNA uptake. Little is known about archaeal RM systems and DNA methylation. To elucidate further understanding for the role of RM systems and DNA methylation in Archaea, we undertook a survey of the presence of RM system genes and related genes, including orphan DNA methylases, in the halophilic archaeal class Halobacteria. Our results reveal that some orphan DNA methyltransferase genes were highly conserved among lineages indicating an important functional constraint, whereas RM systems demonstrated patchy patterns of presence and absence. This irregular distribution is due to frequent horizontal gene transfer and gene loss, a finding suggesting that the evolution and life cycle of RM systems may be best described as that of a selfish genetic element. A putative target motif (CTAG) of one of the orphan methylases was underrepresented in all of the analyzed genomes, whereas another motif (GATC) was overrepresented in most of the haloarchaeal genomes, particularly in those that encoded the cognate orphan methylase.


Assuntos
Enzimas de Restrição-Modificação do DNA/genética , Euryarchaeota/enzimologia , Metiltransferases/genética , Proteínas Arqueais/genética , Metilação de DNA , Euryarchaeota/genética , Evolução Molecular , Transferência Genética Horizontal , Sequenciamento Completo do Genoma/métodos
12.
mBio ; 9(4)2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042201

RESUMO

Fluoroquinolones (FQs) and ciprofloxacin (Cp) are important antimicrobials that pollute the environment in trace amounts. Although Cp has been recommended as prophylaxis for patients undergoing leech therapy to prevent infections by the leech gut symbiont Aeromonas, a puzzling rise in Cp-resistant (Cpr) Aeromonas infections has been reported. We report on the effects of subtherapeutic FQ concentrations on bacteria in an environmental reservoir, the medicinal leech, and describe the presence of multiple antibiotic resistance mutations and a gain-of-function resistance gene. We link the rise of CprAeromonas isolates to exposure of the leech microbiota to very low levels of Cp (0.01 to 0.04 µg/ml), <1/100 of the clinical resistance breakpoint for Aeromonas Using competition experiments and comparative genomics of 37 strains, we determined the mechanisms of resistance in clinical and leech-derived Aeromonas isolates, traced their origin, and determined that the presence of merely 0.01 µg/ml Cp provides a strong competitive advantage for Cpr strains. Deep-sequencing the Cpr-conferring region of gyrA enabled tracing of the mutation-harboring Aeromonas population in archived gut samples, and an increase in the frequency of the Cpr-conferring mutation in 2011 coincides with the initial reports of CprAeromonas infections in patients receiving leech therapy.IMPORTANCE The role of subtherapeutic antimicrobial contamination in selecting for resistant strains has received increasing attention and is an important clinical matter. This study describes the relationship of resistant bacteria from the medicinal leech, Hirudo verbana, with patient infections following leech therapy. While our results highlight the need for alternative antibiotic therapies, the rise of Cpr bacteria demonstrates the importance of restricting the exposure of animals to antibiotics approved for veterinary use. The shift to a more resistant community and the dispersion of Cpr-conferring mechanisms via mobile elements occurred in a natural setting due to the presence of very low levels of fluoroquinolones, revealing the challenges of controlling the spread of antibiotic-resistant bacteria and highlighting the importance of a holistic approach in the management of antibiotic use.


Assuntos
Aeromonas/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Hirudo medicinalis/microbiologia , Aplicação de Sanguessugas/efeitos adversos , Aeromonas/genética , Animais , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , DNA Girase/genética , Reservatórios de Doenças/microbiologia , Fluoroquinolonas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Humanos , Testes de Sensibilidade Microbiana , Mutação
13.
Trends Microbiol ; 25(1): 11-18, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773523

RESUMO

Finding a signature of purifying selection in a gene is usually interpreted as evidence for the gene providing a function that is targeted by natural selection. This opinion offers a very different hypothesis: purifying selection may be due to removing harmful mutations from the population, that is, the gene and its encoded protein become harmful after a mutation occurred, possibly because the mutated protein interferes with the translation machinery, or because of toxicity of the misfolded protein. Finding a signature of purifying selection should not automatically be considered proof of the gene's selectable function.


Assuntos
Sequência Conservada/genética , Escherichia coli/genética , Evolução Molecular , Variação Genética/genética , Modelos Genéticos , Salmonella enterica/genética , Sequência de Bases , Mutação/genética , Filogenia , Seleção Genética/genética
14.
Nat Microbiol ; 1: 16229, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886195
15.
Front Microbiol ; 7: 1342, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27660622

RESUMO

Female members of many cephalopod species house a bacterial consortium in the accessory nidamental gland (ANG), part of the reproductive system. These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens, and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae) of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium.

16.
Proc Natl Acad Sci U S A ; 113(32): E4654-61, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462108

RESUMO

Inteins are parasitic genetic elements that excise themselves at the protein level by self-splicing, allowing the formation of functional, nondisrupted proteins. Many inteins contain a homing endonuclease (HEN) domain and rely on its activity for horizontal propagation. However, successful invasion of an entire population will make this activity redundant, and the HEN domain is expected to degenerate quickly under these conditions. Several theories have been proposed for the continued existence of the both active HEN and noninvaded alleles within a population. However, to date, these models were not directly tested experimentally. Using the natural cell fusion ability of the halophilic archaeon Haloferax volcanii we were able to examine this question in vivo, by mating polB intein-positive [insertion site c in the gene encoding DNA polymerase B (polB-c)] and intein-negative cells and examining the dispersal efficiency of this intein in a natural, polyploid population. Through competition between otherwise isogenic intein-positive and intein-negative strains we determined a surprisingly high fitness cost of over 7% for the polB-c intein. Our laboratory culture experiments and samples taken from Israel's Mediterranean coastline show that the polB-c inteins do not efficiently take over an inteinless population through mating, even under ideal conditions. The presence of the HEN/intein promoted recombination when intein-positive and intein-negative cells were mated. Increased recombination due to HEN activity contributes not only to intein dissemination but also to variation at the population level because recombination tracts during repair extend substantially from the homing site.


Assuntos
Haloferax volcanii/genética , Inteínas/fisiologia , Recombinação Genética , Fusão Celular , DNA Polimerase beta/fisiologia
18.
Nat Rev Genet ; 16(8): 472-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26184597

RESUMO

Horizontal gene transfer (HGT) is the sharing of genetic material between organisms that are not in a parent-offspring relationship. HGT is a widely recognized mechanism for adaptation in bacteria and archaea. Microbial antibiotic resistance and pathogenicity are often associated with HGT, but the scope of HGT extends far beyond disease-causing organisms. In this Review, we describe how HGT has shaped the web of life using examples of HGT among prokaryotes, between prokaryotes and eukaryotes, and even between multicellular eukaryotes. We discuss replacement and additive HGT, the proposed mechanisms of HGT, selective forces that influence HGT, and the evolutionary impact of HGT on ancestral populations and existing populations such as the human microbiome.


Assuntos
Eucariotos/genética , Evolução Molecular , Transferência Genética Horizontal/genética , Transferência Genética Horizontal/fisiologia , Modelos Genéticos , Filogenia , Seleção Genética , Simbiose/genética
19.
BMC Evol Biol ; 15: 70, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25897759

RESUMO

BACKGROUND: The genomic history of prokaryotic organismal lineages is marked by extensive horizontal gene transfer (HGT) between groups of organisms at all taxonomic levels. These HGT events have played an essential role in the origin and distribution of biological innovations. Analyses of ancient gene families show that HGT existed in the distant past, even at the time of the organismal last universal common ancestor (LUCA). Most gene transfers originated in lineages that have since gone extinct. Therefore, one cannot assume that the last common ancestors of each gene were all present in the same cell representing the cellular ancestor of all extant life. RESULTS: Organisms existing as part of a diverse ecosystem at the time of LUCA likely shared genetic material between lineages. If these other lineages persisted for some time, HGT with the descendants of LUCA could have continued into the bacterial and archaeal lineages. Phylogenetic analyses of aminoacyl-tRNA synthetase protein families support the hypothesis that the molecular common ancestors of the most ancient gene families did not all coincide in space and time. This is most apparent in the evolutionary histories of seryl-tRNA synthetase and threonyl-tRNA synthetase protein families, each containing highly divergent "rare" forms, as well as the sparse phylogenetic distributions of pyrrolysyl-tRNA synthetase, and the bacterial heterodimeric form of glycyl-tRNA synthetase. These topologies and phyletic distributions are consistent with horizontal transfers from ancient, likely extinct branches of the tree of life. CONCLUSIONS: Of all the organisms that may have existed at the time of LUCA, by definition only one lineage is survived by known progeny; however, this lineage retains a genomic record of heterogeneous genetic origins. The evolutionary histories of aminoacyl-tRNA synthetases (aaRS) are especially informative in detecting this signal, as they perform primordial biological functions, have undergone several ancient HGT events, and contain many sites with low substitution rates allowing deep phylogenetic reconstruction. We conclude that some aaRS families contain groups that diverge before LUCA. We propose that these ancient gene variants be described by the term "hypnologs", reflecting their ancient, reticulate origin from a time in life history that has been all but erased".


Assuntos
Aminoacil-tRNA Sintetases/genética , Evolução Molecular , Transferência Genética Horizontal , Animais , Archaea/genética , Filogenia
20.
Front Microbiol ; 5: 299, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018750

RESUMO

This research uses inteins, a type of mobile genetic element, to infer patterns of gene transfer within the Halobacteria. We surveyed 118 genomes representing 26 genera of Halobacteria for intein sequences. We then used the presence-absence profile, sequence similarity and phylogenies from the inteins recovered to explore how intein distribution can provide insight on the dynamics of gene flow between closely related and divergent organisms. We identified 24 proteins in the Halobacteria that have been invaded by inteins at some point in their evolutionary history, including two proteins not previously reported to contain an intein. Furthermore, the size of an intein is used as a heuristic for the phase of the intein's life cycle. Larger size inteins are assumed to be the canonical two domain inteins, consisting of self-splicing and homing endonuclease domains (HEN); smaller sizes are assumed to have lost the HEN domain. For many halobacterial groups the consensus phylogenetic signal derived from intein sequences is compatible with vertical inheritance or with a strong gene transfer bias creating these clusters. Regardless, the coexistence of intein-free and intein-containing alleles reveal ongoing transfer and loss of inteins within these groups. Inteins were frequently shared with other Euryarchaeota and among the Bacteria, with members of the Cyanobacteria (Cyanothece, Anabaena), Bacteriodetes (Salinibacter), Betaproteobacteria (Delftia, Acidovorax), Firmicutes (Halanaerobium), Actinobacteria (Longispora), and Deinococcus-Thermus-group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...