Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37732459

RESUMO

A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Camundongos , Drosophila/genética , alfa Catenina , Fusão Celular , Proteínas de Drosophila/genética , Poliploidia
2.
Adv Exp Med Biol ; 1415: 27-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440010

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness in the global aging population. Familial aggregation and genome-wide association (GWA) studies have identified gene variants associated with AMD, implying a strong genetic contribution to AMD development. Two loci, on human Chr 1q31 and 10q26, respectively, represent the most influential of all genetic factors. While the role of CFH at Chr 1q31 is well established, uncertainty remains about the genes ARMS2 and HTRA1, at the Chr 10q26 locus. Since both genes are in strong linkage disequilibrium, assigning individual gene effects is difficult. In this chapter, we review current literature about ARMS2 and HTRA1 and their relevance to AMD risk. Future studies will be necessary to unravel the mechanisms by which they contribute to AMD.


Assuntos
Degeneração Macular , Proteínas , Humanos , Idoso , Proteínas/genética , Serina Endopeptidases/genética , Estudo de Associação Genômica Ampla , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Fator H do Complemento/genética , Genótipo
3.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163536

RESUMO

Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease phenotypes, including fundus spots, decreased axial length, and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação , Receptores de Adiponectina/genética , Degeneração Retiniana/patologia , Animais , Cruzamento , Modelos Animais de Doenças , Epistasia Genética , Proteínas do Olho/metabolismo , Homozigoto , Proteínas de Membrana/metabolismo , Camundongos , Oftalmoscopia , Fenótipo , Receptores de Adiponectina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
4.
Nat Prod Res ; 36(1): 390-395, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33438465

RESUMO

Momordica charantia is a medicinal plant which is widely used in different traditional medicinal systems to treat several diseases. We have identified the differential distribution of phytomedicinally important metabolites in the pericarp, skin and seeds of M. charantia fruit via NMR spectroscopy. Multivariate statistical analysis showed a clustering of the metabolic profiles of seeds and pericarp, and their clear separation from the metabolic profile of the skin. The total phenolic and flavonoid content of the fruit extracts were estimated via bioassays, the radical scavenging activity was estimated via in vitro DPPH and ABTS assays and an inhibitory activity test of α-glucosidase was also performed. The pericarp and seeds contained significant amounts of phenolic compounds and flavonoids, indicating that they are a good source for antioxidants. The skin contained a significantly higher amount of phytosterols such as Charantin and momordicine, which are known to correlate with antidiabetic activity.


Assuntos
Antioxidantes , Flavonoides , Momordica charantia , Fenóis , Antioxidantes/análise , Antioxidantes/farmacologia , Flavonoides/análise , Flavonoides/farmacologia , Frutas/química , Espectroscopia de Ressonância Magnética , Momordica charantia/química , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais , Sementes/química
6.
Cells ; 9(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290105

RESUMO

Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.


Assuntos
Modelos Animais de Doenças , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Animais , Humanos , Camundongos , Degeneração Retiniana/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
7.
Evolution ; 72(9): 1890-1903, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30075053

RESUMO

Dispersal is one of the strategies for organisms to deal with climate change and habitat degradation. Therefore, investigating the effects of dispersal evolution on natural populations is of considerable interest to ecologists and conservation biologists. Although it is known that dispersal itself can evolve due to selection, the behavioral, life-history and metabolic consequences of dispersal evolution are not well understood. Here, we explore these issues by subjecting four outbred laboratory populations of Drosophila melanogaster to selection for increased dispersal. The dispersal-selected populations had similar values of body size, fecundity, and longevity as the nonselected lines (controls), but evolved significantly greater locomotor activity, exploratory tendency, and aggression. Untargeted metabolomic fingerprinting through NMR spectroscopy suggested that the selected flies evolved elevated cellular respiration characterized by greater amounts of glucose, AMP, and NAD. Concurrent evolution of higher level of Octopamine and other neurotransmitters indicate a possible mechanism for the behavioral changes in the selected lines. We discuss the generalizability of our findings in the context of observations from natural populations. To the best of our knowledge, this is the first report of the evolution of metabolome due to selection for dispersal and its connection to dispersal syndrome evolution.


Assuntos
Adaptação Fisiológica , Migração Animal , Evolução Biológica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Metaboloma , Estresse Fisiológico , Animais , Tamanho Corporal , Drosophila melanogaster/crescimento & desenvolvimento , Ecossistema , Feminino , Longevidade , Masculino , Seleção Genética , Síndrome
8.
J Chem Ecol ; 44(6): 611-620, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29797164

RESUMO

Camptothecin (CPT), a monoterpene indole alkaloid, is a potent inhibitor of eukaryotic topoisomerase I (Top 1). Because of this property, several derivatives of CPT are widely used as chemotherapeutic agents. The compound is produced by several plant species, including Nothapodytes nimmoniana (Family: Icacinaceae) presumably as a deterrent to insect pests. Here, we report, a lepidopteran larva, Lymantria sp. of Lymantriidae family which feeds voraciously on the leaves of N. nimmoniana, without any adverse consequences. Larval body weight and molting period were unaffected despite captive feeding of the larva with CPT enriched leaves. Mass spectrometric analysis indicated that nearly 46% of the ingested CPT was excreted while the rest was sequestered predominantly in the exuviae and setae (~35%). Although most of the CPT was in the parental form as found in the plant, traces of inactive, sulfated forms of CPT were recovered from the larva. Compared to that in plant, there were no critical mutations at the CPT binding domain of the insect's Top 1. The gut pH of the larva was alkaline (pH 10.0). The alkaline gut environment converts CPT from its active, lactone form to inactive, carboxylate form. It is likely that such conversion might help the larva to reduce the overall burden of CPT in its gut. We discuss the results in the context of the mechanisms of resistance adapted by insects to plant toxins.


Assuntos
Camptotecina/farmacologia , Magnoliopsida/química , Mariposas/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Camptotecina/química , Camptotecina/classificação , Camptotecina/metabolismo , Cromatografia Líquida de Alta Pressão , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Resistência a Medicamentos , Concentração de Íons de Hidrogênio , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/química , Larva/metabolismo , Espectroscopia de Ressonância Magnética , Magnoliopsida/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Mutação , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectrometria de Massas por Ionização por Electrospray
9.
PLoS One ; 12(11): e0188089, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149207

RESUMO

We used NMR-based metabolomics to test two hypotheses-(i) there will be evolved differences in the metabolome of selected and control populations even under un-infected conditions and (ii) post infection, the metabolomes of the selected and control populations will respond differently. We selected replicate populations of Drosophila melanogaster for increased survivorship (I) against a gram-negative pathogen. We subjected the selected (I) and their control populations (S) to three different treatments: (1) infected with heat-killed bacteria (i), (2) sham infected (s), and (3) untreated (u). We performed 1D and 2D NMR experiments to identify the metabolic differences. Multivariate analysis of the metabolic profiles of the untreated (Iu and Su) flies yielded higher concentrations of lipids, organic acids, sugars, amino acids, NAD and AMP in the Iu treatment as compared to the Su treatment, showing that even in the absence of infection, the metabolome of the I and S regimes was different. In the S and I regimes, post infection/injury, concentration of metabolites directly or indirectly associated with energy related pathways (lipids, organic acids, sugars) declined while the concentration of metabolites that are probably associated with immune response (amino acids) increased. However, in most cases, the I regime flies had a higher concentration of such metabolites even under un-infected conditions. The change in the metabolite concentration upon infection/injury was not always comparable between I and S regimes (in case of lactate, alanine, leucine, lysine, threonine) indicating that the I and S regimes had evolved to respond differentially to infection and to injury.


Assuntos
Drosophila melanogaster/metabolismo , Evolução Molecular , Imunidade Inata/genética , Metaboloma/imunologia , Pseudomonas/fisiologia , Seleção Genética/imunologia , Monofosfato de Adenosina/imunologia , Monofosfato de Adenosina/metabolismo , Aminoácidos/imunologia , Aminoácidos/metabolismo , Animais , Resistência à Doença/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Feminino , Lipídeos/química , Lipídeos/imunologia , Masculino , Metaboloma/genética , Metabolômica , Análise Multivariada , NAD/imunologia , NAD/metabolismo , Análise de Componente Principal , Pseudomonas/patogenicidade , Açúcares/imunologia , Açúcares/metabolismo
10.
Int J Legal Med ; 130(6): 1457-1470, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27627901

RESUMO

Saraca asoca (Roxb.) Willd, commonly known as "Asoka" or "Ashoka," is one of the most important medicinal plants used in raw herbal trade in India. The bark extracts of the tree are used in the treatment of leucorrhea and other uterine disorders besides also having anti-inflammatory, anti-bacterial, anti-pyretic, anti-helminthic, and analgesic activity. The indiscriminate and rampant extraction of the wood to meet the ever-increasing market demand has led to a sharp decline in naturally occurring populations of the species in the country. Consequently, the species has recently been classified as "vulnerable" by the International Union for Conservation of Nature (IUCN). Increasing deforestation and increasing demand for this medicinal plant have resulted in a limited supply and suspected widespread adulteration of the species in the raw herbal trade market. Adulteration is a serious concern due to: (i) reduction in the efficacy of this traditional medicine, (ii) considerable health risk to consumers, and (iii) fraudulent product substitution that impacts the economy for the Natural Health Product (NHP) Industry and consumers. In this paper, we provide the first attempt to assess the extent of adulteration in the raw herbal trade of S. asoca using DNA barcoding validated by NMR spectroscopic techniques. Analyzing market samples drawn from 25 shops, mostly from peninsular India, we show that more than 80 % of the samples were spurious, representing plant material from at least 7 different families. This is the first comprehensive and large-scale study to demonstrate the widespread adulteration of market samples of S. asoca in India. These results pose grave implications for the use of raw herbal drugs, such as that of S. asoca, on consumer health and safety. Based on these findings, we argue for a strong and robust regulatory framework to be put in place, which would ensure the quality of raw herbal trade products and reassure consumer confidence in indigenous medicinal systems. Graphical Abstract DNA barcoding and NMR spectroscopy-based assessment of adulteration in Saraca asoca.


Assuntos
Código de Barras de DNA Taxonômico , Espectroscopia de Ressonância Magnética , Plantas Medicinais/genética , Comércio , Conservação dos Recursos Naturais , DNA de Plantas/genética , Contaminação de Medicamentos , Humanos , Índia , Fitoterapia , Extratos Vegetais/genética , Reação em Cadeia da Polimerase
11.
Mol Biosyst ; 11(12): 3305-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26422411

RESUMO

We utilized an NMR-based metabolomic approach to profile the metabolites in Drosophila melanogaster that cycle with a daily rhythm. 1H 1D and 2D NMR experiments were performed on whole-body extracts sampled from flies that experienced strong time cues in the form of both light and temperature cycles. Multivariate and univariate statistical analysis was used to identify those metabolites whose concentrations oscillate diurnally. We compared metabolite levels at two time points twelve hours apart, one close to the end of the day and the other close to the end of the night, and identified metabolites that differed significantly in their relative concentrations. We were able to identify 14 such metabolites whose concentrations differed significantly between the two time points. The concentrations of metabolites such as sterols, fatty acids, amino acids such as leucine, valine, isoleucine, alanine and lysine as well as other metabolites such as creatine, glucose, AMP and NAD were higher close to the end of the night, whereas the levels of lactic acid, and a few amino acids such as histidine and tryptophan were higher close to the end of the day. We compared signal intensities across 12 equally spaced time points for these 14 metabolites, in order to profile the changes in their levels across the day, since the NMR metabolite peak intensity is directly proportional to its molar concentration. Through this report we establish NMR-based metabolomics combined with multivariate statistical analysis as a useful method for future studies on the interactions between circadian clocks and metabolic processes.


Assuntos
Drosophila melanogaster/metabolismo , Metaboloma , Metabolômica , Ressonância Magnética Nuclear Biomolecular , Fotoperíodo , Temperatura , Animais , Análise por Conglomerados , Metabolômica/métodos
12.
J Pharm Biomed Anal ; 115: 74-85, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26163870

RESUMO

Extracts from the Carica papaya L. plant are widely reported to contain metabolites with antibacterial, antioxidant and anticancer activity. This study aims to analyze the metabolic profiles of papaya leaves and seeds in order to gain insights into their phytomedicinal constituents. We performed metabolite fingerprinting using 1D and 2D 1H NMR experiments and used multivariate statistical analysis to identify those plant parts that contain the most concentrations of metabolites of phytomedicinal value. Secondary metabolites such as phenyl propanoids, including flavonoids, were found in greater concentrations in the leaves as compared to the seeds. UPLC-ESI-MS verified the presence of significant metabolites in the papaya extracts suggested by the NMR analysis. Interestingly, the concentration of eleven secondary metabolites namely caffeic, cinnamic, chlorogenic, quinic, coumaric, vanillic, and protocatechuic acids, naringenin, hesperidin, rutin, and kaempferol, were higher in young as compared to old papaya leaves. The results of the NMR analysis were corroborated by estimating the total phenolic and flavonoid content of the extracts. Estimation of antioxidant activity in leaves and seed extracts by DPPH and ABTS in-vitro assays and antioxidant capacity in C2C12 cell line also showed that papaya extracts exhibit high antioxidant activity.


Assuntos
Antioxidantes/análise , Carica/química , Flavonoides/análise , Metaboloma , Fenóis/análise , Animais , Antioxidantes/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Carica/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Flavonoides/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Análise Multivariada , Fenóis/farmacologia , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/química , Sementes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Ácidos Sulfônicos/química
13.
Mol Biosyst ; 11(2): 595-606, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25464928

RESUMO

It is well known that obesity/high body mass index (BMI) plays a key role in the evolution of insulin resistance and type-2 diabetes mellitus (T2DM). However, the exact mechanism underlying its contribution is still not fully understood. This work focuses on an NMR-based metabolomic investigation of the serum profiles of diabetic, obese South Indian Asian subjects. (1)H 1D and 2D NMR experiments were performed to profile the altered metabolic patterns of obese diabetic subjects and multivariate statistical methods were used to identify metabolites that contributed significantly to the differences in the samples of four different subject groups: diabetic and non-diabetic with low and high BMIs. Our analysis revealed that the T2DM-high BMI group has higher concentrations of saturated fatty acids, certain amino acids (leucine, isoleucine, lysine, proline, threonine, valine, glutamine, phenylalanine, histidine), lactic acid, 3-hydroxybutyric acid, choline, 3,7-dimethyluric acid, pantothenic acid, myoinositol, sorbitol, glycerol, and glucose, as compared to the non-diabetic-low BMI (control) group. Of these 19 identified significant metabolites, the levels of saturated fatty acids, lactate, valine, isoleucine, and phenylalanine are also higher in obese non-diabetic subjects as compared to control subjects, implying that this set of metabolites could be identified as potential biomarkers for the onset of diabetes in subjects with a high BMI. Our work validates the utility of NMR-based metabolomics in conjunction with multivariate statistical analysis to provide insights into the underlying metabolic pathways that are perturbed in diabetic subjects with a high BMI.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Obesidade/metabolismo , Adulto , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/sangue , Análise Discriminante , Feminino , Humanos , Índia , Análise dos Mínimos Quadrados , Masculino , Redes e Vias Metabólicas , Análise Multivariada , Obesidade/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...