Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(44): 27930-27936, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30379163

RESUMO

The development of rechargeable Li-air batteries has been confronted by the critical challenges of large overpotential loss, low achievable capacity, and prohibitively poor cycling and power performance. Surface passivation and pore clogging of the cathode due to the formation of Li2O2 during discharge result in sluggish interfacial charge transfer and have an impact on the mass transport of Li+ ions and O2 in the electrode, consequently giving rise to large voltage hysteresis and premature termination of discharge with low power performance. Here we report a redox flow lithium-oxygen cell with a modified redox electrolyte to tackle these issues. With the assistance of redox mediators, the cell presents substantially enhanced power performance in O2 and dry air during discharge. Through in situ spectroelectrochemical measurements and theoretical calculations, an oxygen reduction intermediate was unequivocally identified. By judiciously optimizing the redox electrolyte, the cell operates at near complete utilization of Li metal upon multiple refueling. The redox flow lithium-oxygen cell demonstrated here is envisaged to provide a pragmatic approach for the implementation of lithium-oxygen battery chemistry and to pave the way for advanced large-scale energy storage.

2.
Small ; 12(19): 2580-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27031907

RESUMO

Durable electrocatalysts with high catalytic activity toward oxygen reduction reaction (ORR) are crucial to high-performance primary zinc-air batteries (ZnABs) and direct methanol fuel cells (DMFCs). An efficient composite electrocatalyst, Co@Co3 O4 core@shell nanoparticles (NPs) embedded in pyrolyzed polydopamine (PPD) is reported, i.e., in Co@Co3 O4 @PPD core@bishell structure, obtained via a three-step sequential process involving hydrothermal synthesis, high temperature calcination under nitrogen atmosphere, and gentle heating in air. With Co@Co3 O4 NPs encapsulated by ultrathin highly graphitized N-doped carbon, the catalyst exhibits excellent stability in aqueous alkaline solution over extended period and good tolerance to methanol crossover effect. The integration of N-doped graphitic carbon outer shell and ultrathin nanocrystalline Co3 O4 inner shell enable high ORR activity of the core@bishell NPs, as evidenced by ZnABs using catalyst of Co@Co3 O4 @PPD in air-cathode which delivers a stable voltage profile over 40 h at a discharge current density of as high as 20 mA cm(-2) .

3.
Nanoscale ; 7(19): 9046-54, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25921031

RESUMO

The increasing global energy demand and the depletion of fossil fuels have stimulated intense research on fuel cells and batteries. Oxygen electrocatalysis plays essential roles as the electrocatalytic reduction and evolution of di-oxygen are always the performance-limiting factors of these devices relying on oxygen electrochemistry. A novel perovskite with the formula La(Co0.55Mn0.45)0.99O3-δ (LCMO) is designed from molecular orbital principles. The hydrothermally synthesized LCMO nanorods have unique structural and chemical properties and possess high intrinsic activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The synergic covalent coupling between LCMO and NrGO enhances the bifunctional ORR and OER activities of the novel LCMO/NrGO hybrid catalyst. The ORR activity of LCMO/NrGO is comparable to the state-of-the-art Pt/C catalyst and its OER activity is competitive to the state-of-the-art Ir/C catalyst. LCMO/NrGO generally outperforms Pt/C and Ir/C with better bifunctional ORR and OER performance and operating durability. LCMO/NrGO represents a new class of low-cost, efficient and durable electrocatalysts for fuel cells, water electrolysers and batteries.

4.
Nanoscale ; 7(5): 1830-8, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25522330

RESUMO

An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm(-2)) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.

5.
Chempluschem ; 80(8): 1341-1346, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31973303

RESUMO

Manganese oxide is grown directly on carbon paper through a simple immersion process, and used as a catalyst-modified air cathode for rechargeable zinc-air batteries. The manganese oxide is distributed evenly within the porous carbon paper, which promotes a rapid three-phase reaction and high utilization of the active materials. Zinc-air batteries with the manganese oxide catalyst directly grown on the carbon paper exhibit improved performance compared with zinc-air batteries fabricated by using manganese oxide powder catalyst coated on carbon paper. The directly grown catalyst reduces the contact resistance and enhances the discharge/charge profile of the zinc-air batteries. Zinc-air batteries with the directly grown catalyst show a discharge voltage of 1.2 V at a current density of 15 mA cm-2 and deliver a power density as high as 108 mW cm-2 at an applied current of 168 mA cm-2 . Furthermore, good cycling stability for up to 500 cycles is achievable during continuous discharge-charge tests without the need to replace the zinc anode or replenish the electrolyte; this outperforms most currently available bifunctional catalysts for rechargeable zinc-air batteries. This study illustrates a promising platform to enhance the cycle life of rechargeable metal-air batteries.

6.
ACS Appl Mater Interfaces ; 6(15): 12684-91, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25058393

RESUMO

Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential reactions for energy-storage and -conversion devices relying on oxygen electrochemistry. High-performance, nonprecious metal-based hybrid catalysts are developed from postsynthesis integration of dual-phase spinel MnCo2O4 (dp-MnCo2O4) nanocrystals with nanocarbon materials, e.g., carbon nanotube (CNT) and nitrogen-doped reduced graphene oxide (N-rGO). The synergic covalent coupling between dp-MnCo2O4 and nanocarbons effectively enhances both the bifunctional ORR and OER activities of the spinel/nanocarbon hybrid catalysts. The dp-MnCo2O4/N-rGO hybrid catalysts exhibited comparable ORR activity and superior OER activity compared to commercial 30 wt % platinum supported on carbon black (Pt/C). An electrically rechargeable zinc-air battery using dp-MnCo2O4/CNT hybrid catalysts on the cathode was successfully operated for 64 discharge-charge cycles (or 768 h equivalent), significantly outperforming the Pt/C counterpart, which could only survive up to 108 h under similar conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...