Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1403, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360698

RESUMO

Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined monolayers of 1T-TaS2. Specifically, an ordered incommensurate charge density wave (oIC-CDW) is realized in 2D with dramatically enhanced amplitude and resistivity. By enhancing CDW order, the hexatic nature of charge density waves becomes observable. Upon heating via in-situ TEM, the CDW continuously melts in a reversible hexatic process wherein topological defects form in the charge density wave. From these results, new regimes of the CDW phase diagram for 1T-TaS2 are derived and consistent with the predicted emergence of vestigial quantum order.

3.
Nat Mater ; 22(1): 50-57, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396963

RESUMO

Layered α-RuCl3 is a promising material to potentially realize the long-sought Kitaev quantum spin liquid with fractionalized excitations. While evidence of this state has been reported under a modest in-plane magnetic field, such behaviour is largely inconsistent with theoretical expectations of spin liquid phases emerging only in out-of-plane fields. These predicted field-induced states have been largely out of reach due to the strong easy-plane anisotropy of bulk crystals, however. We use a combination of tunnelling spectroscopy, magnetotransport, electron diffraction and ab initio calculations to study the layer-dependent magnons, magnetic anisotropy, structure and exchange coupling in atomically thin samples. Due to picoscale distortions, the sign of the average off-diagonal exchange changes in monolayer α-RuCl3, leading to a reversal of spin anisotropy to easy-axis anisotropy, while the Kitaev interaction is concomitantly enhanced. Our work opens the door to the possible exploration of Kitaev physics in the true two-dimensional limit.


Assuntos
Elétrons , Campos Magnéticos , Anisotropia
4.
Nat Commun ; 13(1): 7826, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535920

RESUMO

Twisted 2D materials form complex moiré structures that spontaneously reduce symmetry through picoscale deformation within a mesoscale lattice. We show twisted 2D materials contain a torsional displacement field comprised of three transverse periodic lattice distortions (PLD). The torsional PLD amplitude provides a single order parameter that concisely describes the structural complexity of twisted bilayer moirés. Moreover, the structure and amplitude of a torsional periodic lattice distortion is quantifiable using rudimentary electron diffraction methods sensitive to reciprocal space. In twisted bilayer graphene, the torsional PLD begins to form at angles below 3.89° and the amplitude reaches 8 pm around the magic angle of 1. 1°. At extremely low twist angles (e.g. below 0.25°) the amplitude increases and additional PLD harmonics arise to expand Bernal stacked domains separated by well defined solitonic boundaries. The torsional distortion field in twisted bilayer graphene is analytically described and has an upper bound of 22.6 pm. Similar torsional distortions are observed in twisted WS2, CrI3, and WSe2/MoSe2.

5.
Microsc Microanal ; 26(5): 906-912, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32662380

RESUMO

Hydrocarbon contamination plagues high-resolution and analytical electron microscopy by depositing carbonaceous layers onto surfaces during electron irradiation, which can render carefully prepared specimens useless. Increased specimen thickness degrades resolution with beam broadening alongside loss of contrast. The large inelastic cross-section of carbon hampers accurate atomic species detection. Oxygen and water molecules pose problems of lattice damage by chemically etching the specimen during imaging. These constraints on high-resolution and spectroscopic imaging demand clean, high-vacuum microscopes with dry pumps. Here, we present an open-hardware design of a high-vacuum manifold for transmission electron microscopy (TEM) holders to mitigate hydrocarbon and residual species exposure. We quantitatively show that TEM holders are inherently dirty and introduce a range of unwanted chemical species. Overnight storage in our manifold reduces contaminants by one to two orders of magnitude and promotes two to four times faster vacuum recovery. A built-in bakeout system further reduces contaminants partial pressure to below 10−10 hPa (Torr) (approximately four orders of magnitude down from ambient storage) and alleviates monolayer adsorption during a typical TEM experiment. We determine that bakeout of TEM holder with specimen held therein is the optimal cleaning method. Our high-vacuum manifold design is published with open-source blueprints, parts, and cost list.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...