Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(10)2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37892121

RESUMO

Chronic infection with hepatitis B virus (HBV) is incurable, as the current therapeutics cannot eliminate its persistent genomic material, cccDNA. Screening systems for cccDNA-targeting therapeutics are unavailable, as low copies of cccDNA in vitro complicate detection. To address this, cccDNA copies were massively increased to levels detectable via automated plate readers. This was achieved via continuous infection in a contact-free co-culture of an HBV generator (clone F881), which stably produced clinically relevant amounts of HBV, and HBV acceptors selected to carry high cccDNA loads. cccDNA-targeted therapeutics were then identified via reduced cccDNA-specific fluorescence, taking differences in the cell numbers and viability into account. Amongst the drugs tested, the H1 antihistamine Bilastine, HBVCP inhibitors and, surprisingly, current HBV therapeutics downregulated the cccDNA significantly, reflecting the assay's accuracy and sensitivity in identifying drugs that induce subtle changes in cccDNA levels, which take years to manifest in vivo. Bilastine was the only therapeutic that did not reduce HBV production from F881, indicating it to be a novel direct suppressor of cccDNA levels. When further assessed, only the structurally similar antihistamines Pitolisant and Nizatidine suppressed cccDNA levels when other H1 antihistamines could not. Taken together, our rapid fluorescence cccDNA-targeted drug screen successfully identified a class of molecules with the potential to treat hepatitis B.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Replicação Viral/genética , DNA Viral/genética , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico
2.
World J Gastroenterol ; 27(14): 1369-1391, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33911462

RESUMO

Infection with the hepatitis B virus (HBV) is still a major global health threat as 250 million people worldwide continue to be chronically infected with the virus. While patients may be treated with nucleoside/nucleotide analogues, this only suppresses HBV titre to sub-detection levels without eliminating the persistent HBV covalently closed circular DNA (cccDNA) genome. As a result, HBV infection cannot be cured, and the virus reactivates when conditions are favorable. Interferons (IFNs) are cytokines known to induce powerful antiviral mechanisms that clear viruses from infected cells. They have been shown to induce cccDNA clearance, but their use in the treatment of HBV infection is limited as HBV-targeting immune cells are exhausted and HBV has evolved multiple mechanisms to evade and suppress IFN signalling. Thus, to fully utilize IFN-mediated intracellular mechanisms to effectively eliminate HBV, instead of direct IFN administration, novel strategies to sustain IFN-mediated anti-cccDNA and antiviral mechanisms need to be developed. This review will consolidate what is known about how IFNs act to achieve its intracellular antiviral effects and highlight the critical interferon-stimulated gene targets and effector mechanisms with potent anti-cccDNA functions. These include cccDNA degradation by APOBECs and cccDNA silencing and transcription repression by epigenetic modifications. In addition, the mechanisms that HBV employs to disrupt IFN signalling will be discussed. Drugs that have been developed or are in the pipeline for components of the IFN signalling pathway and HBV targets that detract IFN signalling mechanisms will also be identified and discussed for utility in the treatment of HBV infections. Together, these will provide useful insights into design strategies that specifically target cccDNA for the eradication of HBV.


Assuntos
Hepatite B Crônica , Hepatite B , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Circular , DNA Viral/genética , DNA Viral/uso terapêutico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Interferons/uso terapêutico , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...