Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(29)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33975297

RESUMO

In this paper, we study the structure of the solid selenium (Se) formed by the vapor deposition method. We provide direct visual evidence that faceted crystal-like shapes obtained from vapor phase deposition are a self-assembly of linear strands that have a persistence length of 10µm. These strands are held together by weak forces and can easily be separated. These chains occasionally get entangled to form chiral structures and often meander about destroying long range orientation and translation order in a continuous manner. Moreover, it is easy for the long strands of linear chains to slide past the neighboring ones, and hence the system has a large concentration of disinclination like defects in addition to the defects caused by the entanglement of the chains. Like organic polymers, the obtained Se structures also exhibit a spread in the melting temperature. This spread is closely related to the density of the sub-structures present in the system. The infrared imaging shows that these structures heat up in an inhomogeneous manner and the cross polarized images show that the process of melting initiates in the bulk.

2.
Rev Sci Instrum ; 92(12): 123902, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972466

RESUMO

We present a method for modifying a continuous flow cryostat and a steel plate DAC (Diamond Anvil Cell) to perform high pressure micro-Raman experiments at low temperatures. Despite using a steel DAC with a lower specific heat capacity (∼335 J/kg K), this setup can routinely perform high pressure (∼10 GPa) measurements at temperatures as low as 26 K. This adaptation is appropriate for varying the temperature of the sample while keeping it at a constant pressure. We determined that the temperature variation across the sample chamber is about 1 K using both direct temperature measurements and finite element analysis of the heat transport across the DAC. We present Raman spectroscopy results on elemental selenium at high pressures and low temperatures using our modified setup.

3.
Sci Rep ; 7(1): 4449, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667268

RESUMO

Keeping current interests to identify materials with intrinsic magnetodielectric behaviour near room temperature and with novel pyroelectric current anomalies, we report temperature and magnetic-field dependent behavior of complex dielectric permittivity and pyroelectric current for an oxide, Li2Ni2Mo3O12, containing magnetic ions with (distorted) honey-comb and chain arrangement and ordering magnetically below 8 K. The dielectric data reveal the existence of relaxor ferroelectricity behaviour in the range 160-240 K and there are corresponding Raman mode anomalies as well in this temperature range. Pyrocurrent behavior is also consistent with this interpretation, with the pyrocurrent peak-temperature interestingly correlating with the poling temperature. 7Li NMR offer an evidence for crystallographic disorder intrinsic to this compound and we therefore conclude that such a disorder is apparently responsible for the randomness of local electric field leading to relaxor ferroelectric property. Another observation of emphasis is that there is a notable decrease in the dielectric constant with the application of magnetic field to the tune of about -2.4% at 300 K, with the magnitude varying marginally with temperature. Small loss factor values validate the intrinsic behaviour of the magnetodielectric effect at room temperature.

4.
Soft Matter ; 12(6): 1759-64, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26693675

RESUMO

Efficient mixing strategies in a fluid involve generation of multi-scale flows which are strongly suppressed in highly viscous systems. In this work, we report a novel form of multi-scale flow, driven by an external electric field, in a highly viscous (η∼ 1 Pa s) oil-in-oil emulsion system consisting of micron-size droplets. This electro-hydrodynamic flow leads to dynamical organization at spatial scales much larger than that of the individual droplets. We characterize the dynamics associated with these structures by measuring the time variation of the bulk Reynolds stress in a rheometer, as well as through a micro-scale rheometric measurement by probing the spectrum of fluctuations of a thin fiber cantilever driven by these flows. The results display scale invariance in the energy spectra over three decades with a power law reminiscent of turbulent convection. We also demonstrate the mixing efficiency in such micro-scale systems.

5.
J Phys Condens Matter ; 27(41): 415404, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26418969

RESUMO

Arguments based on the Mermin-Wagner theorem suggest that the quasi-1D trigonal phase of Se should be unstable against long wavelength perturbations. Consisting of parallel Se-Se chains, this essentially fragile solid undergoes a partial transition to a monoclinic structure (consisting of 8-membered rings) at low temperatures (≈50 K), and to a distorted trigonal phase at moderate pressures (≈3GPa). Experimental investigations on sub-millimeter-sized single crystals provide clear evidence that these transitions occur via a novel and counter-intuitive route. This involves the reversible formation of an intermediate, disordered structure that appears as a minority phase with increasing pressure as well as with decreasing temperature. The formation of the disordered state is indicated by: (a) a 'Boson-peak' that appears at low temperatures in the specific heat and resonance Raman data, and (b) a decrease in the intensity of Raman lines over a relatively narrow pressure range. We complement the experimental results with a phenomenological model that illustrates how a first order structural transition may lead to disorder. Interestingly, nanocrystals of trigonal Se do not undergo any structural transition in the parameter space studied; neither do they exhibit signs of disorder, further underlining the role of disorder in this type of structural transition.

6.
Sci Rep ; 4: 5636, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25005869

RESUMO

Observation of ferroelectricity among non-d(0) systems, which was believed for a long time an unrealistic concept, led to various proposals for the mechanisms to explain the same (i.e. magnetically induced ferroelectricity) during last decade. Here, we provide support for ferroelectricity of a displacive-type possibly involving magnetic ions due to short-range magnetic correlations within a spin-chain, through the demonstration of magnetoelectric coupling in a Haldane spin-chain compound Er2BaNiO5 well above its Néel temperature of (TN = ) 32 K. There is a distinct evidence for electric polarization setting in near 60 K around which there is an evidence for short-range magnetic correlations from other experimental methods. Raman studies also establish a softening of phonon modes in the same temperature (T) range and T-dependent x-ray diffraction (XRD) patterns also reveal lattice parameters anomalies. Density-functional theory based calculations establish a displacive component (similar to d(0)-ness) as the root-cause of ferroelectricity from (magnetic) NiO6 chain, thereby offering a new route to search for similar materials near room temperature to enable applications.

7.
Sci Rep ; 4: 5275, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24919483

RESUMO

We report on the spreading of triboelectrically charged glass particles on an oppositely charged surface of a plastic cylindrical container in the presence of a constant mechanical agitation. The particles spread via sticking, as a monolayer on the cylinder's surface. Continued agitation initiates a sequence of instabilities of this monolayer, which first forms periodic wavy-stripe-shaped transverse density modulation in the monolayer and then ejects narrow and long particle-jets from the tips of these stripes. These jets finally coalesce laterally to form a homogeneous spreading front that is layered along the spreading direction. These remarkable growth patterns are related to a time evolving frictional drag between the moving charged glass particles and the countercharges on the plastic container. The results provide insight into the multiscale time-dependent tribolelectric processes and motivates further investigation into the microscopic causes of these macroscopic dynamical instabilities and spatial structures.

8.
J Phys Condens Matter ; 26(11): 115405, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24589655

RESUMO

The phase transition from the hexagonal 4H polytype of silver to the commonly known 3C (fcc) phase was studied in detail using x-ray diffraction, electron microscopy, differential scanning calorimetry and Raman spectroscopy. The phase transition is irreversible and accompanied by extensive microstructural changes and grain growth. Detailed scanning and isothermal calorimetric analysis suggests that it is an autocatalytic transformation. Though the calorimetric data suggest an exothermic first-order phase transition with an onset at 155.6 °C (for a heating rate of 2 K min(-1)) and a latent heat of 312.9 J g(-1), the microstructure and the electrical resistance appear to change gradually from much lower temperatures. The 4H phase shows a Raman active mode at 64.3 cm(-1) (at 4 K) that undergoes mode softening as the 4H → 3C transformation temperature is approached. A first-principles density functional theory calculation shows that the stacking fault energy of 4H-Ag increases monotonically with temperature. That 4H-Ag has a higher density of stacking faults than 3C-Ag, implies the metastability of the former at higher temperatures. Energetically, the 4H phase is intermediate between the hexagonal 2H phase and the 3C ground state, as indicated by the spontaneous transformation of the 2H to the 4H phase at -4 °C. Our data appear to indicate that the 4H-Ag phase is stabilized at reduced dimensions and thermally induced grain growth is probably responsible for triggering the irreversible transformation to cubic Ag.


Assuntos
Modelos Moleculares , Simulação de Dinâmica Molecular , Transição de Fase , Prata/química , Varredura Diferencial de Calorimetria , Termodinâmica , Temperatura de Transição , Difração de Raios X
9.
Lab Chip ; 14(7): 1330-5, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24519377

RESUMO

We demonstrate a simple and robust method to produce large 2-dimensional and quasi-3-dimensional arrays of tunable liquid microlenses using a time varying external electric field as the only control parameter. With increasing frequency, the shape of the individual lensing elements (~40 µm in diameter) evolves from an oblate (lentil shaped) to a prolate (egg shaped) spheroid, thereby making the focal length a tunable quantity. Moreover, such microlenses can be spatially localized in desired configurations by patterning the electrode. This system has the advantage that it provides a large dynamic range of shape deformation (with a response time of ~30 ms for the whole range of deformation), which is useful in designing adaptive optics.

10.
J Phys Condens Matter ; 26(2): 025402, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24305516

RESUMO

We report the optical, electronic, vibrational and mechanical properties of a stable, anisotropic, hexagonal (4H) form of silver. First principles calculations based on density functional theory were used to simulate the phonon dispersion curves and electronic band structure of 4H-Ag. The phonon dispersion data at 0 K do not contain unstable phonon modes, thereby confirming that it is a locally stable structure. The Fermi surface of the 4H phase differs in a subtle way from that of the cubic phase. Experimental measurements indicate that, when compared to the commonly known face-centered cubic (3C) form of silver, the 4H-Ag form shows a 130-fold higher, strongly anisotropic, in-plane resistivity and a much lower optical reflectance with a pronounced surface plasmon contribution that imparts a distinctive golden hue to the material. Unlike common silver, the lower symmetry of the 4H-Ag structure allows it to be Raman active. Mechanically, 4H-Ag is harder, more brittle and less malleable. Overall, this novel, poorly metallic, anisotropic, darker and harder crystallographic modification of silver bears little resemblance to its conventional counterpart.

11.
Sci Rep ; 3: 2051, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23787445

RESUMO

The quasi-one-dimensional, chiral crystal structure of Selenium has fascinating implications: we report simultaneous magnetic and ferroelectric order in single crystalline Se microtubes below ≈40 K. This is accompanied by a structural transition involving a partial fragmentation of the infinite chains without losing overall crystalline order. Raman spectral data indicate a coupling of magnons with phonons and electric field, while the dielectric constant shows a strong dependence on magnetic field. Our first-principles theoretical analysis reveals that this unexpected multiferroic behavior originates from Selenium being a weak topological insulator. It thus exhibits stable electronic states at its surface, and magnetism emerges from their spin polarization. Consequently, the broken two-fold rotational symmetry permits switchable polarization along its helical axis. We explain the observed magnetoelectric couplings using a Landau theory based on the coupling of phonons with spin and electric field. Our work opens up a new class of topological surface-multiferroics with chiral bulk structure.

12.
J Nanosci Nanotechnol ; 11(12): 10379-86, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22408913

RESUMO

We report a simple, versatile, low cost fabrication technique for synthesizing nanorod arrays whose architecture is suited for many applications spanning the nanometer to micrometer range. Specifically, we have covered the range of nanorod diameter from 50 to 1200 nm. From a detailed study of the growth parameters involved in the synthesis of the ZnO nanorod arrays from an aqueous solution, we report, in particular, the effects of varying the capping agent, substrate and substrate-seeding. We find that seeding the substrate and selecting the appropriate capping agent play the most crucial roles in the alignment of nanorod arrays. Our study on the use of different precursor materials and varied substrates for the growth of ZnO nanorod arrays should lead to an enhanced understanding of the controllable growth of ZnO crystals and nanostructures.

13.
J Nanosci Nanotechnol ; 9(8): 4792-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19928151

RESUMO

Zinc oxide nanorods were synthesized by a direct electrodeposition technique on indium tin oxide plates. The effect of a systematic variation of the deposition potential and the inter-electrode distance on the morphology of ZnO nanorods was investigated. X-ray diffraction studies indicated that the nanorods are highly c-axis oriented. The diameter of the nanorods depends mainly on the deposition potential and the electrode separation. Our detailed study of the synthesis-morphology correlations provide the optimal electrochemical conditions required for oriented ZnO nanorods with minimum diameter.

14.
Nanotechnology ; 19(7): 075709, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-21817657

RESUMO

A parallel array of isolated metal nanowires is expected to be hydrophilic. We show, however, that a clustering of such nanowires brought about by vacuum drying produces a 'dual-scale roughness' and confers a strongly hydrophobic property to the surface. The mean size of the nanowire clusters as well as the contact angle are both found to be related to the wire length, and the critical wire length above which the surface becomes hydrophobic is ≈10 µm. Surface roughness is generally known to enhance water-repellent properties, but this is the first report of roughness-induced hydrophobicity on a bare (uncoated) metallic surface.

15.
J Nanosci Nanotechnol ; 7(2): 641-6, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17450807

RESUMO

Silver nanoparticles were sputter deposited through self organized hexagonally ordered porous anodic alumina templates that were fabricated using a two-step anodization process. The average pore diameter of the template was 90 nm and the interpore spacing was 120 nm. Atomic force microscope studies of the sputter-deposited silver nanoparticle array on a Si substrate indicate an approximate replication of the porous anodic alumina mask. The nature of the deposition depends strongly on the process parameters such as sputtering voltage, ambient pressure and substrate temperature. We report a detailed study of the sputtering conditions that lead to an optimal deposition through the template.


Assuntos
Óxido de Alumínio/química , Nanopartículas/química , Nanotecnologia/métodos , Materiais Revestidos Biocompatíveis/química , Temperatura Alta , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Porosidade , Silício/química , Prata/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA