Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(4): 2392-2399, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29298387

RESUMO

This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, and BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO2/mi for ICEVs and ∼250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.


Assuntos
Gases de Efeito Estufa , Gasolina , Efeito Estufa , Veículos Automotores , Estados Unidos , Emissões de Veículos
2.
J Phys Condens Matter ; 27(15): 154202, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25782688

RESUMO

As transistors continue to shrink toward nanoscale dimensions, their characteristics are increasingly dependent on the statistical variations of impurities in the semiconductor material. The scanning tunneling microscope (STM) can be used to not only study prototype devices with atomically precise placement of impurity atoms, but can also probe how the properties of these impurities depend on the local environment. Tunneling spectroscopy of Mn acceptors in GaAs indicates that surface-layer Mn act as a deep acceptor, with a hole binding energy that can be tuned by positioning charged defects nearby. Band bending induced by the tip or by these defects can also tune the ionization state of the acceptor complex, evident as a ring-like contrast in STM images. The interplay of these effects is explored over a wide range of defect distances, and understood using iterative simulations of tip-induced band bending.

3.
Nano Lett ; 13(6): 2418-22, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23647308

RESUMO

A low-temperature scanning tunneling microscope was used in conjunction with density functional theory calculations to determine the binding sites and charge states of adsorbed Ga and Mn atoms on GaAs(110). To quantify the adatom charge states (both +1e), the Coulomb interaction with an individual Mn acceptor is measured via tunneling spectroscopy and compared with theoretical predictions. Several methods for positioning these charged adatoms are demonstrated, allowing us to engineer the electrostatic landscape of the surface with atomic precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA