Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205762

RESUMO

African Americans (AA) are two times more likely to be diagnosed with and succumb to prostate cancer (PCa) compared to European Americans (EA). There is mounting evidence that biological differences in these tumors contribute to disparities in patient outcomes. Our goal was to examine the differences in DNA damage in AA and EA prostate tissues. Tissue microarrays with matched tumor-benign adjacent pairs from 77 AA and EA PCa patients were analyzed for abasic sites, oxidative lesions, crosslinks, and uracil content using the Repair Assisted Damage Detection (RADD) assay. Our analysis revealed that AA PCa, overall, have more DNA damage than EA PCa. Increased uracil and pyrimidine lesions occurred in AA tumors, while EA tumors had more oxidative lesions. AA PCa have higher levels of UMP and folate cycle metabolites than their EA counterparts. AA PCa showed higher levels of UNG, the uracil-specific glycosylase, than EA, despite uracil lesions being retained within the genome. AA patients also had lower levels of the base excision repair protein XRCC1. These results indicate dysfunction in the base excision repair pathway in AA tumors. Further, these findings reveal how metabolic rewiring in AA PCa drives biological disparities and identifies a targetable axis for cancer therapeutics.

2.
JNCI Cancer Spectr ; 3(2): pkz019, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31360899

RESUMO

African American (AA) men have a 60% higher incidence and two times greater risk of dying of prostate cancer (PCa) than European American men, yet there is limited insight into the molecular mechanisms driving this difference. To our knowledge, metabolic alterations, a cancer-associated hallmark, have not been reported in AA PCa, despite their importance in tumor biology. Therefore, we measured 190 metabolites across ancestry-verified AA PCa/benign adjacent tissue pairs (n = 33 each) and identified alterations in the methionine-homocysteine pathway utilizing two-sided statistical tests for all comparisons. Consistent with this finding, methionine and homocysteine were elevated in plasma from AA PCa patients using case-control (AA PCa vs AA control, methionine: P = .0007 and homocysteine: P < .0001), biopsy cohorts (AA biopsy positive vs AA biopsy negative, methionine: P = .0002 and homocysteine: P < .0001), and race assignments based on either self-report (AA PCa vs European American PCa, methionine: P = .001, homocysteine: P < .0001) or West African ancestry (upper tertile vs middle tertile, homocysteine: P < .0001; upper tertile vs low tertile, homocysteine: P = .002). These findings demonstrate reprogrammed metabolism in AA PCa patients and provide a potential biological basis for PCa disparities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...