Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(7): 8908-8914, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31961120

RESUMO

Additive manufacturing or, as also called, three-dimensional (3D) printing is considered as a game-changer in replacing traditional processing methods in numerous applications; yet, it has one intrinsic potential weakness related to bonding of layers formed during the printing process. Prior to finding solutions for improvement, a thorough quantitative understanding of the mechanical properties of the interface is needed. Here, a quantitative analysis of the nanomechanical properties in 3D printed photopolymers formed by digital light processing (DLP) stereolithography (SLA) is shown. Mapping of the contact Young's modulus across the layered structure is performed by atomic force microscopy (AFM) with a submicrometer resolution. The peakforce quantitative nanomechanical mapping (PF-QNM) mode was employed in the AFM experiments. The layered specimens were obtained from an acrylate-based resin (PR48, Autodesk), containing also a light-absorbing dye. We observed local depressions with values up to 30% of the maximum stiffness at the interface between the consecutively deposited layers, indicating local depletion of molecular cross-link density. The thickness values of the interfacial layers were approximately 11 µm, which corresponds to ∼22% of the total layer thickness (50 µm). We attribute this to heterogeneities of the photopolymerization reaction, related to (1) atmospheric oxygen inhibition and (2) molecular diffusion across the interface. Additionally, a pronounced stiffness decay was observed across each individual layer with a skewed profile. This behavior was rationalized by a spatial variation of the polymer cross-link density related to the variations of light absorption within the layers. This is caused by the presence of light absorbers in the printed material, resulting in a spatial decay of light intensity during photopolymerization.

2.
Rev Sci Instrum ; 88(3): 033705, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372404

RESUMO

In this paper, we describe a method allowing one to perform three-dimensional displacement control in force spectroscopy by atomic force microscopy (AFM). Traditionally, AFM force curves are measured in the normal direction of the contacted surface. The method described can be employed to address not only the magnitude of the measured force but also its direction. We demonstrate the technique using a case study of angle-dependent desorption of a single poly(2-hydroxyethyl methacrylate) (PHEMA) chain from a planar silica surface in an aqueous solution. The chains were end-grafted from the AFM tip in high dilution, enabling single macromolecule pull experiments. Our experiments give evidence of angular dependence of the desorption force of single polymer chains and illustrate the added value of introducing force direction control in AFM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA